SHORT COMMUNICATION

Characterization of Toll-like Receptor 7/8 Agonist Amino Acid for Antigen-Adjuvant Conjugation Co-delivery System

Yoshio Fujita^{1*}, Ryota Uchida², Keigo Nishida^{1,2}, Hiroaki Taguchi^{1,2}

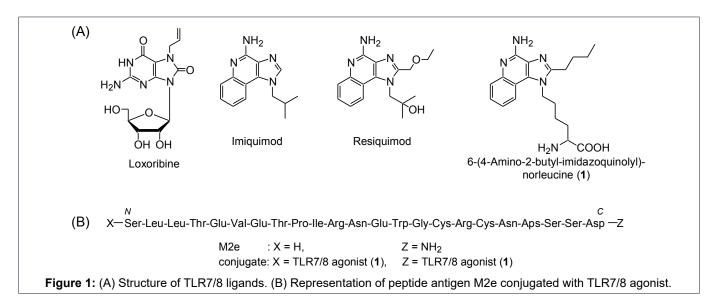
¹Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan ²Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan

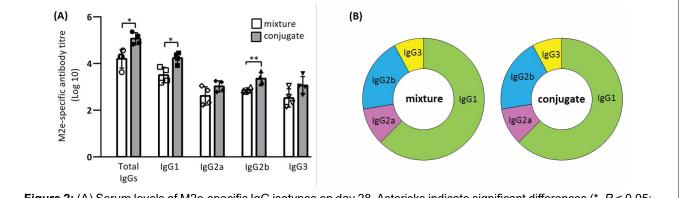
Abstract

Purified or synthetic antigens including peptides require adjuvant molecules to improve vaccine immunogenicity. Toll-like receptors (TLRs) agonists are powerful vaccine adjuvant candidates. A wide variety of TLR agonists have been studied for the development of antigenadjuvant co-delivery systems. The covalent conjugation between antigen and TLR agonist is one of promising strategies to deliver to target cells. Recently we have reported the development of novel TLR7/8 agonist amino acids. In this paper, we will describe the contribution of antigen-adjuvant conjugation using a TLR7/8 agonist amino acid to antigen-specific immune responses regarding IgG isotype distribution and cytokine production.

Keywords: Adjuvant; Co-delivery System; Peptide Vaccine; Toll-like Receptors

Introduction

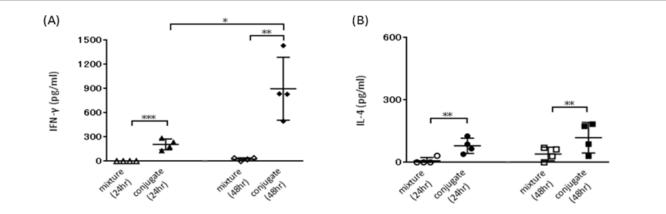

Vaccine is widely considered as the most cost-effective medicine for prophylactic protection against infectious diseases, such as tuberculosis, polio, mumps, measles, and yellow fever. Vaccines are classified into different groups according to their origin or components: live-attenuated vaccines, inactivated/killed vaccines, or subunit vaccines. In comparison with live-attenuated or inactivated vaccines, peptide-based subunit vaccines can potentially induce antigenspecific immune responses and reduce the risk of adverse effects associated with microbial components. Antigenicity of peptide administered alone, however, is not strong enough to stimulate immune system appropriately and co-administration of adjuvants is necessary. Antigen and adjuvant are required to be administered at the same time and by the same route. Therefore, many research groups have been exerting to develop vaccine delivery systems [1-4]. One of the promising strategies is the co-delivery system of antigen and adjuvant to the target cells through the covalent conjugation between them, especially using Toll-like receptor (TLR) agonists as adjuvant molecules [5]. Up to now, 10 and 12 TLRs have been discovered in humans and mice, and are expressed in various immune cells including dendritic cells and macrophages [6]. Interaction between TLRs and their ligands activates and regulates the innate and adaptive immunity [7, 8]. Currently, TLR4 agonist 3-O-desacyl-4'-monophosphoryl lipid A (MPL®) is approved for human use (human papilloma virus vaccine, Cervarix®, GSK and Hepatitis B vaccine, Fendrix®, GSK). Various TLR ligands have been studied for vaccine adjuvant developments, including the antigen and adjuvant co-delivery systems [9-12]. TLR7 and TLR8 recognize microbial ssRNAs as natural ligands and also synthetic compounds with small molecular weight such as guanosine analogues (Loxoribine) [13], and imidazoquinoline analogues (imiquimod and R848) [14]. TLR7 and TLR8 agonists induce Th1-type cytokine productions such as IFNs [15]. Through the structure-activity relationship study based on a TLR7 agonist imiquimod (Aldara®), we have recently developed a TLR7/8 agonist amino acid, 6-(4-amino-2-butyl-imidazoquinolyl)-norleucine 1 [16], as shown in Figure 1. As its structural features, the amino acid 1 has a TLR7/8 agonist pharmacophore on the side chain, and Boc- and Fmoc-protected analogues are capable to be used for solid phase peptide synthesis in a conventional manner. With regard to biological feature, 1 showed an adjuvant activity, in terms of antigen-specific antibody production when mixed or conjugated with peptide antigen. The balance of Th1/ Th2 is influenced by vaccine components, and evaluated by determination of production of IgG isotypes, cytokines or chemokines [17, 18]. To estimate a detailed adjuvant effect of amino acid 1 and usefulness for the antigen-adjuvant codelivery system, we examined the contribution of antigenadjuvant conjugation to IgG isotype distribution and cytokine production in the present study (Figure 1).


Results and Discussion

In this study, M2e peptide (SLLTEVETPIRNEWG-CRCNDSSD), the ectodomain of influenza A virus matrix

Correspondence to: Yoshio Fujita, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan, Tel: +81-59-340-0602, Fax: +81-59-398-1271. E-Mail: yfujita[AT]suzuka-u[DOT]ac[DOT]jp

Received: Feb 19, 2018; Accepted: Feb 21, 2018; Published: Feb 26, 2018


Figure 2: (A) Serum levels of M2e-specific IgG isotypes on day 28. Asterisks indicate significant differences (*, P < 0.05; **, P < 0.01) by one-way analysis ANOVA with Student's t test. (B) The ratio of IgG isotypes distribution.

protein 2 (M2) [19, 20], was used as a model antigen. Two peptide, M2e and M2e conjugated with TLR7/8 agonist amino acid 1 at its both *N*- and *C*-termini, were prepared by Fmoc-solid phase peptide synthesis as previously reported [16], with a minor modification. To avoid a side reaction during repetitive coupling steps, the aromatic amino group of amino acid 1 was protected by Trt group. Briefly, Fmoc-6-(4-amino-2-butyl-imidazoquinolyl)-norleucine and Trt-Cl were reacted in dioxane in the presence of trimethylamine [21].

Female BALB/c mice (*n* = 4/group) were subcutaneously injected with 50 μg of immunogens (M2e mixed with 10 equimolar of TLR7/8 agonist 1, or conjugated with 2 equimolar of TLR7/8 agonist 1) in sterile-filtered PBS (total volume of 50 μL) on days 0, 7, 14, and 21. To evaluate the ratio of IgG isotype distribution, the amount of Th2-associated isotype (IgG1) and Th1-associated isotypes (IgG2a, IgG2b, and IgG3) in the collected serum on day 28 were determined by ELISA (Figure 2 (A)). Each IgG isotype controls were purchased from Medical & Biological Laboratories Co., LTD and the control IgG and corresponding HRP-conjugated goat anti-mouse IgG isotype secondary antibodies were purchased from Abcam [22]. It was observed that the amounts of all IgG antibody isotype productions were increased by the covalent conjugation of TLR 7/8 agonist 1 to peptide antigen in

comparison with the case of mixture. In regard with Th1/Th2 bias evaluation, the ratios of IgG isotypes distribution were shown in Figure 2 (B). The ratio of Th1- and Th2-associated isotype distribution was not significantly changed by the conjugation. The amounts of Th1-associated isotypes (IgG2a, IgG2b, and IgG3) were smaller than that of Th2-associated isotype (IgG1) in both cases (Figure 2).

To assess the antigen-specific cytokine production, splenocytes $(1 \times 10^6 \text{ cell/mL})$ from the immunized mice were treated with M2e (10 μ g/mL). The levels of IFN- γ (Th1-type cytokine) and IL-4 (Th2-type cytokine) productions in cell culture supernatant after 24-hr and 48-hr antigen restimulations were determined using ELISA kits [23]. As shown in Figure 3, there was no detectable or low level of cytokine productions in the case of immunization with the mixture (M2e and 10 equimolar of TLR7/8 agonist amino acid 1). Meanwhile, the conjugation of peptide antigen and TLR7/8 agonist 1 remarkably increased IFN-γ and IL-4 productions. The splenocytes from immunized mice with the conjugate vaccine could induce a sufficient immune response to peptide antigen alone. Moreover, a production of IFN-γ, but not IL-4, was amplified by prolongation of restimulation time (48 hr). TLR7 and 8 agonists are generally characterized as a Th1-type adjuvant [14, 15]. It was observed that prolonged antigen restimulation

Figure 3: Induction level of cytokines (A; IFN-γ, B; IL-4) after antigen restimulation of mouse splenocyte. Asterisks indicate significant differences (*, P < 0.05; **, P < 0.01; ***, P < 0.001) by one-way analysis ANOVA with Student's t test.

showed induction of a Th1-type cytokine response with high levels of IFN- γ and low levels of IL-4 (Figure 3).

In summary, we evaluated the antigen-adjuvant co-delivery system using TLR7/8 agonist amino acid 1. The covalent conjugation induced a quantitative change of antigen-specific responses. This system, in which antigen and adjuvant efficiently activate immune responses by targeting the same immune cells, can reduce the amount of adjuvant dose and would contribute to the development of future vaccine delivery systems with less risk of side effects. As the design of adjuvants composed of different ligands in single molecules (TLR2-TLR9 ligands heterodimer [24], TLR4-TLR7-TLR9 ligands heterotrimer [25], and TLR2-TLR7 ligands heterodimer [26, 27] as well as TLR2-NOD2 (nucleotidebinding oligomerization domain-containing protein 2) ligands heterodimer [28] were reported recently, similar attempts using multiple different adjuvant molecules would be applied to the antigen-adjuvant conjugation. Therefore, searching optimized or suitable combinations from a wide variety of different adjuvant molecules including TLR7/8 agonist amino acid 1 to conjugate will be beneficial researches for the development of the next generation of antigen-adjuvant co-delivery system.

Acknowledgements

This work was supported by OKASAN-KATO FOUNDATION.

References

- O'Hagan DT (2001) Recent developments in vaccine delivery systems. Curr Drug Targets Infect Disord 1: 273-286. [View Article]
- 2. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW (2008) Vaccine adjuvant systems: enhancing the efficacy of subunit protein antigens. *Int J Pharm* 364: 272-280. [View Article]
- 3. Fujita Y, Taguchi H (2011) Current status of multiple antigenpresenting peptide vaccine systems: application of organic and inorganic nanoparticles. *Chem Cent J* 5: 48. [View Article]
- Skwarczynski M, Toth I (2014) Recent advances in peptidebased subunit nanovaccines. *Nanomedicine (Lond)* 9: 2657-2669. [View Article]
- Fujita Y, Taguchi H (2012) Overview and outlook of Toll-like receptor ligand–antigen conjugate vaccines. *Ther Deliv* 3: 749-760. [View Article]

- 6. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. *Annu Rev Immunol* 21: 335-376. [View Article]
- Blasius AL, Beutler B (2010) Intracellular toll-like receptors. *Immunity* 32: 305-315. [View Article]
- 8. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. *Nat Immunol* 11: 373-384. [View Article]
- 9. Salvador A, Igartua M, Hernández RM, Pedraz JL (2011) An overview on the field of micro- and nanotechnologies for synthetic peptide-based vaccines. *J Drug Deliv* 2011: 181646. [View Article]
- 10. Heit A, Schmitz F, O'Keeffe M, Staib C, Busch DH, et al. (2005) Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. *J Immunol* 174: 4373-4380. [View Article]
- 11. Geraci C, Consoli GM, Granata G, Galante E, Palmigiano A, et al. (2013) First self-adjuvant multicomponent potential vaccine candidates by tethering of four or eight MUC1 antigenic immunodominant PDTRP units on a calixarene platform: synthesis and biological evaluation. *Bioconjug Chem* 24: 1710-1720. [View Article]
- 12. Francica JR, Lynn GM, Laga R, Joyce MG, Ruckwardt TJ, et al. (2016) Thermoresponsive polymer nanoparticles co-deliver RSV F trimers with a TLR-7/8 adjuvant. *Bioconjug Chem* 27: 2372-2385. [View Article]
- 13. Shibata T, Ohto U, Nomura S, Kibata K, Motoi Y, et al. (2016) Guanosine and its modified derivatives are endogenous ligands for TLR7. *Int Immunol* 28: 211-222. [View Article]
- 14. Vasilakos JP, Tomai MA (2013) The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. *Expert Rev Vaccines* 12: 809-819. [View Article]
- Spranger S, Javorovic M, Bürdek M, Wilde S, Mosetter B, et al. (2010) Generation of Th1-polarizing dendritic cells using the TLR7/8 agonist CL075. *J Immunol* 185: 738-747. [View Article]
- Fujita Y, Hirai K, Nishida K, Taguchi H (2016) 6-(4-Amino-2-butyl-imidazoquinolyl)-norleucine: Toll-like receptor 7 and 8 agonist amino acid for self-adjuvanting peptide vaccine. *Amino Acids* 48: 1319-1329. [View Article]
- 17. Barton GM, Medzhitov R (2002) Control of adaptive immune responses by Toll-like receptors. *Curr Opin Immunol* 14: 380-383. [View Article]

- Netea MG, Van der Meer JW, Sutmuller RP, Adema GJ, Kullberg BJ (2005) From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother 49: 3991-3996. [View Article]
- Fiers W, De Filette M, El Bakkouri K, Schepens B, Roose K, et al. (2009) M2e-based universal influenza A vaccine. *Vaccine* 27: 6280-6283. [View Article]
- Kolpe A, Schepens B, Fiers W, Saelens X. (2017) M2-based influenza vaccines: recent advances and clinical potential. *Expert Rev Vaccines* 16: 123-136. [View Article]
- 21. R_f = 0.50 (CH₃Cl/MeOH/AcOH = 8:3:1), ESI-MS: 834.3941 g/mol, [M+H]⁺ m/z 834.3907 (calcd., 834.4019), [M+Na]+ 856.3695 (calcd.,856.3839). ¹H-NMR (400 MHz; CDCl₃): 0.83 (3H, t, J = 7.2 Hz), 1.22-1.96 (10H, m), 2.68-2.90 (2H, br), 4.17-4.41 (6H, m) 5.77 (1H, br), 7.12-7.82 (28H, m); ¹³C-NMR (100 MHz; CDCl₃): 14.7, 23.4, 27.6, 30.7, 33.0, 46.7, 48.2, 55.2, 67.6, 120.6, 120.1, 126.1, 127.7, 128.0, 128.6, 130.2, 142.2, 144.8, 145.0, 146.1, 148.7, 154.5, 156.8.
- 22. The following control antibodies were used: IgG (ab37355), IgG1 (M075-3), IgG2a (M076-3), IgG2b (M077-3) and IgG3 (M078-3). The following secondary antibodies were used: anti-IgG (ab97265), anti-IgG1 (ab97240), anti-IgG2a (ab97245), anti-IgG2b (ab97250) and anti-IgG3 (ab97260).

- 23. Mouse IL-4 Quantikine® ELISA Kit, and mouse IFN-γ Quantikine® ELISA Kit (R & D Systems, USA) were used.
- Mancini RJ, Tom JK, Esser-Kahn AP (2014) Covalently coupled immunostimulant heterodimers. *Angew Chem Int Ed* 53: 189-192. [View Article]
- 25. Tom J K, Dotsey E Y, Wong H Y, Stutts L, Moore T, et al. (2015) Modulation of innate immune responses via covalently linked TLR agonists. *ACS Cent Sci* 1: 439-448. [View Article]
- Gutjahr A, Papagno L, Nicoli F, Lamoureux A, Vernejoul F, et al. (2017) Cutting edge: a dual TLR2 and TLR7 ligand induces highly potent humoral and cell-mediated immune responses. J Immunol 198: 4205-4209. [View Article]
- 27. Laiño J, Wangorsch A, Blanco F, Wolfheimer S, Krause M, et al. (2017) Targeting of immune cells by dual TLR2/7 ligands suppresses features of allergic Th2 immune responses in mice. *J Immunol Res* 2017: 1-12. [View Article]
- Pavot V, Rochereau N, Rességuier J, Gutjahr A, Genin C, et al. (2014) Cutting edge: new chimeric NOD2/TLR2 adjuvant drastically increases vaccine immunogenicity. *J Immunol* 193: 5781-5785. [View Article]

Citation: Fujita Y, Uchida R, Nishida K, Taguchi H (2018) Characterization of Toll-like Receptor 7/8 Agonist Amino Acid for Antigen-Adjuvant Conjugation Co-delivery System. J Target Drug Deliv 2: 001-004.

Copyright: © 2018 Fujita Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.