CASE REPORT

Hemophagocytic Lymphocytohistiocytosis Post Allogeneic Hematopoietic Cell Transplant: A Case Report and Review of the Literature

Christopher S Hino1*, Gary J Schiller2

¹David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

²UCLA Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at UCLA Los Angeles, CA, USA

Introduction

Hemophagocytic lymphocytohistiocytosis (HLH) is a rare, life-threatening syndrome characterized by hyperactivation of cytotoxic T lymphocytes, natural killer (NK) cells, and macrophages in bone marrow (BM) and other parts of the reticuloendothelial system. This inflammatory state results in hypercytokinemia with rapidly progressive, immune-mediated injury of multiple organs. Clinically, HLH often manifests with signs/symptoms consisting of fever, splenomegaly, cytopenias, hepatitis and/or hepatomegaly, central nervous system disturbances, coagulopathy, hypertriglyceridemia, hyperferritinemia, hemophagocytosis, and diminished NK cell activity. [1, 2]

HLH presents in both children and adults. Primary or familial HLH often presents in childhood and is potentially driven by underlying genetic mutations that encode critical proteins involved with regulating the immune response to malignant, infectious or autoimmune stimuli. Secondary or acquired HLH (SHLH) is triggered from a dysregulated immune response to malignancy, infection, or autoimmune stimulus without an identifiable underlying genetic mutation. [1] Immune activation from a viral infection, most notably Epstein - Barr virus (EBV), is a common trigger in both primary and secondary HLH. [3, 4] EBV infection may trigger HLH in individuals with defects in perforin-dependent cytotoxicity or X-linked lymphoproliferative disease (XLP), as well as in individuals without a known genetic predisposition. [3] Remarkably, the development of HLH triggered after allogeneic and autologous stem cell transplant (SCT- HLH) has also been reported in rare cases in literature. However, this entity is very difficult to diagnose and can complicate the course of SCT, causing graft failure and high mortality. Here we report a case of patient with aplastic anemia who developed HLH following allogeneic stem cell transplant in the setting of EBV infection.

A 42-year-old woman with severe aplastic anemia was admitted for elective allogeneic hematopoietic cell transplant from a matched unrelated donor following a conditioning regimen of cyclophosphamide/TBI/ATG. Acute GVHD prophylaxis consisted of MTX/prednisone/tacrolimus. At day +56 following transplant, she was admitted for febrile neutropenia with no localizing signs and symptoms of infection. A bone marrow biopsy performed at the time of admission demonstrated hypocellularity with decreased trilineage maturation. The marrow was characterized by histiocytosis with marked hemophagocytosis.

RFLP identified 91% donor cells with 96% donor myeloid and 53% donor T cells detected by RFLP. The patient was also found to have an elevated ferritin level >20, 000 ng/mL, high sIL2R level (9716pg/mL), and hepatosplenomegaly on imaging.

At the time of hospitalization, blood tests were negative for HIV, CMV, VZV, HHV6, HTLV, parvovirus B19, enterovirus, adenovirus, HSV type 1 and 2. There was significant EBViremia (Viral load: 120, 926 copies/mL at 54 days post-transplant). Given these findings, the clinical team was highly suspicious of a diagnosis of HLH provoked by EBViremia in the setting of allogenic SCT. The patient was treated with foscarnet 90mg/kg for 14-day course and continued on acyclovir and letermovir and given Rituximab as prophylaxis for lymphoma in the setting of high EBV titers.

At day +79 post-transplant, the patient was readmitted for anemia (Hgb 6.6) and dark stools for 1 day. Further workup revealed that she had *Staphylococcus epidermidis* bacteremia and acute on chronic anemia with initial concern for gastrointestinal bleeding. The patient was treated with meropenem, 1 unit of packed red blood cells, and discharged 5 days later on Daptomycin. She was later readmitted 4 days thereafter for persistent fever and tachycardia.

During admission, she developed altered level of consciousness. Brain MRI demonstrated new multifocal masses in the brain

Correspondence to: Christopher S Hino, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA, Email: Chino[AT]mednet[DOT]ucla[DOT]edu

Received: July 09, 2020; Accepted: July 15, 2020; Published: July 17, 2020

concerning for atypical infection, with associated edema and hemorrhagic expansion. Patient was subsequently transferred to the Neuro ICU and intubated/sedated for airway protection. She was extubated 3 days later with improvement of mental status. 2 days later she developed altered level of consciousness and was found to have worsening hemorrhagic expansion and midline shift on CT head. After ongoing goals of discussion, patient received palliative care and subsequently passed away 2 days later.

HLH occurring after stem cell transplant is a very rare, but significant complication associated with engraftment delay and failure following HSCT. [5] The development of HLH significantly increases mortality rates after HSCT, worsening the prognosis despite current treatment approaches. [6] While studies have identified potential mechanisms regarding the pathogenesis of HLH, the mechanism of HLH after HSCT remains unknown. [1]

To date, there have been several reports of HLH after hematopoietic stem cell transplantation with many demonstrating an association with viral infections such as adenovirus and cytomegalovirus. [4] This is one of the first known reported cases of the development of HLH triggered after allogeneic SCT in the setting of EBV infection (Table 1). While cases similar to this are rarely reported in the literature, the differential between HLH and EBV infection

Table 1: Hemophagocytic Lymphocytohistiocytosis post-hematopoietic stem cell transplantation reported in literature.

Publication	Age	Gender	Primary Diagnosis	Stem cell HLA match	Conditioning regimen	GVHD prophylaxis	EBV Status	Treatment	Response
Sokal et al (1987) [11]	8	М	Fanconi anemia	Ur-BM, 6/6	CY/TBI 4	CsA	_	Acyclovir	Resolved
Levy et al (1990) [12]	6	F	Wilm Tumor	Auto BM	Local RT/Mel/ADM	_	_	IVIG	Not engrafted
Reardon et al (1990) [13]	8	F	ALL	r-BM 8/8	Bu/Cy	CsA/CS	_	_	Not engrafted
Nagafuji et al (1998) [14]	52	F	AML	Auto PBSC	BU/VP16/Ara-C	_	_	CS/IVIG	Not resolved
Fukuno et al (2001) [15]	67	F	NHL	Auto PBSC	CY/VP16/MCNU	_	_	CS/CsA	Not engrafted
Abe et al (2002) [16]	39	М	NHL	r-PBSC, 6/6	TBI 2	CsA/MMF	_	CS/VP16	Not engrafted
Abe et al (2002) [16]	50	F	NHL	r-PBSC, 5/6	TBI 2	CsA/MMF	_	CS	Not engrafted
Tanaka et al (2004) [17]	7	F	AML/MDS	Ur-CB, 5/6	CY/TBI 12/Ara-C	CsA/sMTX	_	CS/second PBSCT	Engrafted
Boelens et al (2006) [18]	2	F	Hurler	r-PBSC 3/6	ATG/Flu/Mel/TSP	_	+	Anti-CD20+ monoclonal antibody/CS	Resolved
Ostronoff et al (2006) [19]	54	F	MM	Auto PBSC	Mel	_	_	CS/IVIG	Engrafted
Ishida et al (2007) [20]	2	М	JMML	r-BM 8/8	Flu/Bu/Mel	MTX/Tac	_	IVIG/VP16	Resolved
Koyama et al (2007) [21]	3	N/A	NHL	r-BM, 3/6	TBI 12/VP16/TSP	TAC/sMTX/CS	_	CS/VP16	Engrafted
Koyama et al (2007) [21]	9	N/A	ID	Ur-BM, 4/6	Flu/TBI 12/Ara-C/VP16	TAC/sMTX	_	CS/IVIG/VP16	Engrafted
Koyama et al (2007) [21]	3	N/A	AML	r-BM, 6/6	Flu/TBI 12/ Ara-C/VP16	TAC/sMTX	_	CS/IVIG	Engrafted
Koyama et al (2007) [21]	2	N/A	ALL	r-PBSC, -	TBI 10/TSP	TAC	_	IVIG/VP16	Not engrafted
Koyama et al (2007) [21]	16	N/A	EBV-LPD	r-PBSC, -	Flu/Mel/ATG	TAC	+	CS/VP16	Not engrafted
Koyama et al (2007) [21]	9	N/A	AML	Ur-BM, 6/6	CY/TBI 12/TSP	TAC/sMTX	_	CS/VP16	Engrafted
Lackner et al (2008) [22]	7.5	F	Relapsed ALL	r-BM	Flu/Mel/Campath	CS/CsA/MMF	+	CS/daclizumab/ VP16	Resolved
Lackner et al (2008) [22]	9.5	F	AML	Haploidentical BM	FluMel/ATG	CS/CsA	_	CS/IVIG/Ribavarin	Resolved
Norris et al (2009) [23]	8 mo	М	IL-2RIG mutation SCID	Haploidentical maternal PBSC transplant	_	_	_	Antibiotics/ATG/ Second maternal PBSC transplant	Resolved
Abdelkefi et al (2009) [24]	19	N/A	SAA	N/A	Atgam/CY	CsA/MTX	+	IVIG	Not Engrafted

Abdelkefi et al (2009) [24]	36	N/A	SAA	N/A	Atgam/CY	CsA/MTX	_	IVIG	Not Engrafted
Abdelkefi et al (2009) [24]	30	N/A	SAA	N/A	Atgam/CY	CsA/MTX	_	IVIG	Not Engrafted
Abdelkefi et al (2009) [24]	24	N/A	SAA	N/A	Atgam/CY	CsA/MTX	_	_	Resolved
Abdelkefi et al (2009) [24]	22	N/A	ALL	N/A	TBI/VP16	CsA/MTX	_	CS	Not Engrafted
Abdelkefi et al (2009) [24]	18	N/A	SAA	N/A	Atgam/CY	CsA/MTX	_	_	Not Engrafted
Abdelkefi et al (2009) [24]	56	N/A	MM	N/A	Melphalan	CsA/MTX	_	_	Not Engrafted
Hashii et al (2010) [25]	6 mo	F	JAk3 deficient SCID	r-BM (father, 8/8)	_	CsA/MTX	_	CS/VP16	Not resolved
Park et al (2015) [26]	3.5	F	UNC13D mutation	Ur- HSCT	MAC	_	_	CS	Not resolved
ColiŢă A et al (2016) [27]	29	N/A	T/NK-cell lymphoma	Auto PBSC	BCNU (Carmustine), VP16, Cytarabine, Mel	-	_	Corticosteroids, Etoposide, Cyclosporine, IVIG	Resolved
Vatsayan et al (2016) [28]	19	М	Ewing's Sarcoma	Ur-PBSC	Bu-Cy/ATG	TAC/sMTX	_	CSe/IVIG/ Foscarnet	Engrafted
Jaiswal et al (2016) [29]	6	F	SAA	Haploidentical PBSC	Cy/Flu/Mel	CsA/MMF/PTCY	_	CS/IVIG/VP16/ Vcr/ATG, campath/ etanercept/second HSCT	Not resolved
Jaiswal et al (2016) [29]	9.5	F	SAA	Haploidentical PBSC	Cy/Flu/Mel	CsA/MMF/PTCY	_	CS/IVIG/VP16 ATG/Campath/ etanercept	Not resolved
Jaiswal et al (2016) [29]	3	М	Beta-thalassemia major	Haploidentical PBSC	Cy/Flu/Mel	CsA/MMF/PTCY	+	CS/IVIG/rituximab	Not resolved
Jaiswal et al (2016) [29]	4	М	Refractory AML	Haploidentical PBSC	Cy/Flu/Mel	CsA/MMF/PTCY	_	CS/IVIG/VP16/Vcr/ ATG/etanercept/ second transplant	Not resolved
Sandler et al (2019) [6]	54	М	CML	r-PBSC	Flu/Bu/ATG	_	+	CS/CSA/IVIG/ IVMP/Anakinra	Engrafted
Sandler et al (2019) [6]	72	М	AML (post-ET)	Ur-PBSC	Flu/Mel/Alem (FMC)	_	+	IVMP/IVIG/ Anakinra/CSA	Not Engrafted
Sandler et al (2019) [6]	43	F	MDS	Ur-PBSC	Flu/Mel/Alem (FMC)	_	_	IVMP/IVIG/ Anakinra/CSA	Not Engrafted
Sandler et al (2019) [6]	57	F	AML	r-PBSC	Flu/Mel/Alem (FMC)	_	_	IVMP/IVIG/ Anakinra/VP16	Not Engrafted
Sandler et al (2019) [6]	42	М	AML	r-PBSC	Flu/Mel/Alem (FMC)	_	+	IVMP/IVIG/ Anakinra	Not Engrafte
Sandler et al (2019) [6]	58	М	AML	Ur-PBSC	FLAMSA-BU	_	_	CSA/MMF/IVMP/ IVIG/Anakinra	Not Engrafted

Abbreviations: M: Male; Ur: Unrelated; BM: Bone Marrow; CY: Cyclophosphamide; TBI: Total Body Irradiation; CSA: Cyclosporine; F: Female; RT: Radiation Therapy; Mel: Melphalan; ADM: Adriamycin; IVIG: Intravenous Immunoglobulin; AML: Acute Myeloid Leukaemia; PBSC: Peripheral Blood Stem Cell; BU: Busulfan; VP16: Etoposide; Ara-C: Cytosine Arabinoside; CS: Corticosteroids; NHL: Non-Hodgkin Lymphoma; MCNU: Ranimustine; R: Related; AML/MDS: Acute Myeloid Leukaemia With Multilineage Dysplasia; CB: Cord Blood; MTX: Methotrexate; MM: Multiple Myeloma; TSP: Tespamine; TAC: Tacrolimus; ID: Immunodeficiency; Flu: Fludarabine; ALL: Acute Lymphoblastic Leukemia; EBV-LPD: Epstein-Barr Virus Associated Lymphoproliferative Disorder; ATG: Anti-Thymoglobulin; SAA: Severe Aplastic Anemia; IVMP: Intravenous Methylprednisolone; FLAMSA-BU: Fludarabine Cytarabine; Amsacrine; Busulphan; JMML: Juvenile Myelomonocytic Leukemia; SCID: Severe Combined Immunodeficiency; MMF: Mycophenolate Mofetil; Ptcy: Post-Transplant Cyclophosphamide; Vcr: Vincristine.

can be very difficult given that HLH is a clinical diagnosis with often nonspecific clinical features, and that primary EBV infection may develop hallmarks of HLH as part of natural infection. Both HLH and EBV may present with febrile illness, cytopenia, and splenomegaly. [3] Pronounced hyperferritinemia is one of the few prognostic factors that can be used to reliably differentiate between infectious etiology vs HLH with a ferritin level >10,000 ng/ml being 90% sensitive and 96% specific for HLH. [7-10] In the present case, the patient exhibited elevated ferritin levels >20,000 ng/ml 56 days post with moderate decrease to ~15,000 ng/ml by day 69 post-transplant likely supporting a diagnosis of HLH in the setting of EBV viremia.

While this patient fulfilled the widely accepted diagnostic criteria for HLH proposed by Henter et al. in 2004, there is concern that these criteria are validated for the post-HSCT population. Relying on these criteria alone may result in diagnostic and treatment delay and thus justify the need for further research that identifies accurate diagnostic criteria. With an estimated incidence of 3%, sHLH is likely underrecognized complication following allogeneic HSCT. [6] Further large retrospective and prospective studies are warranted to more comprehensively characterize the risk factors, frequency, severity and outcomes for patients at risk of developing HLH post-allogeneic HSCT. [11-29]

Abbreviations: HLH: Hemophagocytic Lymphocytohistiocytosis; NK: Natural Killer; BM: Bone Marrow; EBV: Epstein - Barr Virus; XLP: X-Linked Lymphoproliferative; SCT: Stem Cell Transplant.

Conflicts of Interest:

The authors declare no competing financial interests.

References

- 1. George Melissa R (2014) "Hemophagocytic lymphohistiocytosis: review of etiologies and management." *J Blood Med* 5: 69-86. [View Article]
- Al-Samkari Hanny and Nancy Berliner (2018) "Hemophagocytic lymphohistiocytosis." Annual Review of Pathology: Mechanisms of Disease 13: 27-49. [View Article]
- 3. Marsh Rebecca A (2018) "Epstein-Barr Virus and Hemophagocytic Lymphohistiocytosis." *Front Immunol* 8: 1902. [View Article]
- 4. Brisse Ellen, Carine H Wouters, Graciela Andrei, Patrick Matthys (2017) "How Viruses Contribute to the Pathogenesis of Hemophagocytic Lymphohistiocytosis." *Front Immunol*, 8: 1102. [View Article]
- Takagi Shinsuke, Kazuhiro Masuoka, Naoyuki Uchida, Kazuya Ishiwata, Hideki Araoka, et al. (2009) "High Incidence of Haemophagocytic Syndrome Following Umbilical Cord Blood Transplantation for Adults." *British Journal of Haematology* 147: pp. 543-553. [View Article]

- 6. Sandler Robert David, Stuart Carter, Harpreet Kaur, Sebastian Francis, Rachel Scarlett Tattersall, et al. (2020) "Haemophagocytic Lymphohistiocytosis (HLH) Following Allogeneic Haematopoietic Stem Cell Transplantation (HSCT) time to Reappraise with Modern Diagnostic and Treatment Strategies?" *Bone Marrow Transplantation* 55: pp. 307-316. [View Article]
- 7. Imashuku Shinsaku (2008) "Hyperferritinemia in Hemophagocytic Lymphohistiocytosis and Related Diseases." *Pediatr Blood & Cancer* 51: pp. 442. [View Article]
- 8. Henter Jan Inge (2008) "Pronounced Hyperferritinemia: Expanding the Field of Hemophagocytic Lymphohistiocytosis." *Pediatr Blood Cancer* 50: pp. 1127-1129. [View Article]
- 9. Allen Carl E, Xiaoying Yu, Claudia A Kozinetz, Kenneth L McClain (2008) "Highly Elevated Ferritin Levels and the Diagnosis of Hemophagocytic Lymphohistiocytosis." *Pediatr Blood Cancer* 50: pp. 1227-1235. [View Article]
- 10. Henter Jan-Inge, Annacarin Horne, Maurizio Aricó, R Maarten Egeler, Alexandra H Filipovich, et al. (2007) "HLH-2004: Diagnostic and Therapeutic Guidelines for Hemophagocytic Lymphohistiocytosis." *Pediatr Blood Cancer* 48: pp. 124-131. [View Article]
- 11. Sokal E, M Michel, J Ninane, D Latinne, M de Bruyere, et al. (1987) "Bone Marrow Transplantation from an Unrelated Donor for Fanconi's Anaemia: Two Unusual Complications." *Bone Marrow Transplant* 2: pp. 99-102. [View Article]
- 12. Levy J, RA Wodell, CS August, E Bayever (1990) "Adenovirus-Related Hemophagocytic Syndrome after Bone Marrow Transplantation." *Bone Marrow Transplant* 6: pp. 349-352. [View Article]
- 13. Reardon David A, R Roskos, CA Hanson, V Castle (1991) "Virus-Associated Hemophagocytic Syndrome Following Bone Marrow Transplantation" *Am J Pediatr HematolOncol* 13: pp. 305-309. [View Article]
- 14. Nagafuji K, T Eto, S Hayashi, Y Tokunaga, H Gondo, et al. (1998) "Fatal Cytomegalovirus Interstitial Pneumonia Following Autologous Peripheral Blood Stem Cell Transplantation." *Bone Marrow Transplant* 21: pp. 301-303. [View Article]
- 15. Fukuno Kenji, H Tsurumi, T Yamada, M Oyama, H Moriwaki (2001) "Graft Failure Due to Hemophagocytic Syndrome after Autologous Peripheral Blood Stem Cell Transplantation." *Int J Hematol* 73: pp. 262-65. [View Article]
- 16. Abe Y, I Choi, K Hara, T Matsushima, J Nishimura, et al. (2002) "Hemophagocytic Syndrome: A Rare Complication of Allogeneic Nonmyeloablative Hematopoietic Stem Cell Transplantation." *Bone Marrow Transplant* 29: pp. 799-801. [View Article]

- 17. Tanaka Takayuki, Hiroshi Matsubara, Souichi Adachi, Hsi Chang, Hisanori Fujino, et al. (2004) "Second Transplantation from HLA 2-Loci-Mismatched Mother for Graft Failure Due to Hemophagocytic Syndrome after Cord Blood Transplantation." *Int J Hematol* 80: pp. 467-469. [View Article]
- 18. Boelens JJ, G Lazo, J F Gaiser, N M Wulffraat (2006) "Epstein-Barr Virus-Associated Haemophagocytic Lympho- Histiocytosis after Stem Cell Transplantation." Bone Marrow Transplant 38: pp. 709-710. [View Article]
- 19. Ostronoff M, F Ostronoff, M Coutinho, R Calixto, AP Souto Maior, et al. (2006) "Hemophagocytic Syndrome after Autologous Peripheral Blood Stem Cell Transplantation for Multiple Myeloma; Successful Treatment with High-Dose Intravenous Immunoglobulin." *Bone Marrow Transplant* 37: pp. 797-798. [View Article]
- 20. Ishida H, H Yoshida, T Yoshihara, M Ito, A Morimoto (2007) "Origin of Macrophages Involved in the Development of Allogeneic Hematopoietic Stem Cell Transplantation-Associated Hemophagocytic Syndrome: Observations on a Patient with Juvenile Myelomonocytic Leukemia." *Bone Marrow Transplant* 40: pp. 701-703. [View Article]
- 21. Koyama M, Sawada A, Yasui M, Masami Inoue, Keisei Kawa (2007) Encouraging Results of Low-Dose Etoposide in the Treatment of Early-Onset Hemophagocytic Syndrome Following Allogeneic Hematopoietic Stem Cell Transplantation. *Int J Hematol* 86: 466-467. [View Article]
- 22. Lackner H, Christian Urban, Petra Sovinz, Martin Benesch, Andrea Moser, et al. (2008) "Hemophagocytic Lymphohistiocytosis as Severe Adverse Event of Antineoplastic Treatment in Children." *Haematologica* 93: pp. 291-294. [View Article]
- 23. Norris Robin, Michele Paessler, Nancy Bunin (2009) "Donor T-Cell-mediated Pancytopenia after Haploidentical

- Hematopoietic Stem Cell Transplant for Severe Combined Immunodeficiency." *J Pediatr Hematol Oncol* 31: pp. 148-150. [View Article]
- 24. Abdelkefi Abderrahman, Wassim Ben Jamil, Lamia Torjman, Saloua Ladeb, Habib Ksouri, et al. (2009) "Hemophagocytic Syndrome after Hematopoietic Stem Cell Transplantation: A Prospective Observational Study." *Int J Hematol* 89: pp. 368-373. [View Article]
- 25. Hashii Yoshiko, Hisao Yoshida, Sato Kuroda, Shigenori Kusuki, Emiko Sato, et al. (2010) "Hemophagocytosis after Bone Marrow Transplantation for JAK3-Deficient Severe Combined Immunodeficiency." *Pediatr Transplant* 14: pp. E105-09. [View Article]
- 26. Park Meerim, et al. (2015) "Rotavirus-Associated Hemophagocytic Lymphohistiocytosis (HLH) after Hematopoietic Stem Cell Transplantation for Familial HLH: Rotavirus-Associated HLH after HSCT." *Pediatr Int* 57: pp. e77-80. [View Article]
- 27. ColiŢă Andrei, Anca ColiŢă, Camelia Marioara Dobrea, Alina Daniela Tănase, Carmen Şaguna, et al. (2016) "Hemophagocytic Lymphohistiocytosis: A Rare Complication of Autologous Stem Cell Transplantation." Rom J Morphol Embryol 57: pp. 551-557. [View Article]
- 28. Vatsayan Anant, Irina Pateva, Linda Cabral, Jignesh Dalal, Rolla Abu-Arja (2018) "Post-Hematopoietic Stem Cell Transplant Hemophagocytic Lymphohistiocytosis or an Impostor: Case Report and Review of Literature." *Pediatr Transplant* 22: p. e13174. [View Article]
- 29. Jaiswal Sarita Rani, Aditi Chakrabarti, Sumita Chatterjee, Sneh Bhargava, Kunal Ray, et al. (2016) "Hemophagocytic Syndrome Following Haploidentical Peripheral Blood Stem Cell Transplantation with Post-Transplant Cyclophosphamide." *Int J Hematol* 103: pp. 234-42. [View Article]

Citation: Hino CS, Schiller GJ (2020) Hemophagocytic Lymphocytohistiocytosis Post Allogeneic Hematopoietic Cell Transplant: A Case Report and Review of the Literature. J Cancer Biol Clin Oncol 4(1): 001-005.

Copyright: © 2020 Hino CS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.