RESEARCH ARTICLE

Improving Coffee Husk Compost Quality

Hiroyuki Harada^{1*}, Hidayat Endar², Asmak Afriliana³

- 1*Department of apply chemistry, Saga university, Honjo, Saga, Japan
- ²Department of Environmental Science, Prefectural of Hiroshima University, Japan
- ³Department of Agricultural Product Technology, Faculty of Agricultural Technology, University of Jember, Indonesia

Introduction

In Indonesian, coffee husk is normally burnt on the central coffee production, make pollution such as disease to human and pets to plants. Whereas, in 2018 about 36.72 tons of coffee husk used not efficiently [1]. It is important to consider that coffee husk can contribute to environmental problems. On other hand, coffee farmers used chemical fertilizers for long time, therefore make agricultural residue in fields, an alternative is to make compost.

The use of compost can be important in products based on the principles of eco-sustainable and eco-friendly especially for reduce agricultural residue. Eco-sustainable means of reduce the negative effects of farming on the surrounding environment [2]. While eco-friendly means of treating a variety of organic wastes, from landfilling to make product with the aim to compact global warming and promote nutrient recycling.

Generally, coffee husk has been applied by mixturing with animal manures, other agricultural wastes used as compost and the incubation period of composting has been taken for long time, because most researches used natural microorganisms for composting, which are not effective [3]. In this study the activator for composting used bacterial inoculants (*bacillus*) with the aim for improved compost quality while the methods by incubator with the aim for rapidly compost maturity. [4], reported in their studied that the use of bacterial inoculants (*Bacillus*) in the composting of vegetable products improved the quality compost and takes short time of incubation.

Material And Methods

Review of Compost Vessel

The type of vessel was used incubator. The dimension of compost vessel was shown in (Figure 1). Dimension of the compost vessel: width is 17 cm, depth 20.5 cm and height 16.5 cm.

Composting Procedure

The composting took place at a Laboratory in the Prefectural University of Hiroshima, Shobara. The compost process in anaerobic condition with 2 type temperature condition of (30°C and 40°C). The process of composting during two-months (56 days). Anaerobic digestion is a processes by which

microorganisms break down organic material in the absence of oxygen. The materials were used coffee husk (100 g) mixed with cow dung (50 g), chicken manure (50 g), and rice grain (25 g), and bacillus activator commercial (EBB) with doses 1ml/100 ml water. The materials were screened through a 4.75 m/m sieve. All material were put into the incubator in each temperature condition (Figure 1). Coffee husk from Solok Radjo Cooperative, West Sumatera Province, Indonesian. Cow dung and chicken manure from Yasaki. Co., Ltd. Japan. Rice grain from Nichino food. Co., Ltd. Japan. *Bacillus* activator is patended by the Food Industry Research Center, and the Industrial Technology Center, Fukuoka Prefectural. Produced by the non-profit organization Eco Cycle Kyushu/Okinawa, Japan.

Analytical Methods

The physical and chemical analysis include: The pH and electrical conductivity (EC) was determined once per week during composting process. The samples were measured using a suspension of 1:5 (w/v) [5]. The pH was measured used IAQUA twin-pH-22B, electrical conductivity (EC) was

Correspondence to: Hiroyuki Harada, Department of Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka, Hiroshima 727-0023, Japan. Email: ho-harada[AT]pu-hiroshima[DOT]ac[DOT]jp

Received: Feb 18, 2020; Accepted: Feb 25, 2020; Published: Feb 27, 2020

measured used IAQUA twin-EC-33B. Moisture content was determined by drying at 105°C for 24 hours and expressed as a percentage of total weight (Association of Official Agriculture Chemists, 2002). Ammonium-nitrogen (NH₄-N), nitrate-nitrogen (NO₃-N), phosphate (PO₄) were extracted by shaking 1 gram of sample with 10 ml NaCL and concentration were determined in filtered extract by molecular absorption spectrophotometry [6]. Total phosphorus was determined by the spectrophotometry (880 nm). Total carbon and total nitrogen were analyzed with an auto-analyzer (Macro Corder-MT 6).

Phytotoxicity

Seed germination index using distilled water mixed with fresh compost product in ratio 1:10 and shaked for 1 hours. The suspension was centrifuged at 5000 rpm for 20 min and the supernatant was filtered. 10 seeds of Japan Spinach seeds (*Spinacia oleracea*) distributed on the filter paper 90 mm (5B) in a petri dish of 10 cm diameter. 10 ml of the extract was added to the petri dish. 10 ml of distilled water was used for control. The test was run in triplicate. Incubated at temperature in dark condition in temperature room for 72 hours [7]. After counting the number of seeds germinated and measuring the length of roots. Seed Germination Index was calculated as follow (HKORC, 2005):

Seed Germination index (%) = $\frac{Germination\ rate\ in\ product\ mixture\ x\ root\ length}{Germination\ rate\ in\ control\ sample\ x\ root\ length} x\ 100$

Results And Discussion

Elemental analysis of material used for composting as shown in (Table 1). The results of analysis showed that the pH of the coffee husk is lower when compared to cow dung, chicken manure, and rice grain with 5.98, 6.43, 6.48, 6.27 respectively. The pH values of organic wastes suitable for composting is recommended in the range from 5-12 [8]. The conductivity of coffee husk is 0.9 mS cm⁻¹, this is indicates that the coffee

husk presence lower of soluble salt content. The phosphorus of coffee husk is highest when compared to cow dung, chicken manure and rice grain with 0.23%, 0.18%, 0.13%, 0.14% respectively. The coffee husk contained high amount of C: N ratio with 105.21 that is highest for uptake to plant. [9], reported that for adjust the C: N ratio for composting, livestock manure are usually mixed with plant materials.

Hemicellulose and lignin of materials used composting as shown in (Table 2). The hemicellulose of coffee husk is highest than cow dung, chicken manure, and rice grain with 14.6%, 12.3%, 8%, 6.3% respectively. The lignin content of coffee husk is also highest when compared to cow dung, chicken manure, and rice grain with 41.25%, 30.25%, 16.50%, 20.16% respectively.

Elemental analysis after composting as shown in (Table 3). The results showed that the C:N ratio of all compost is suitable for improved soil and plant [10]. Based on (Table 1) that cow dung, chicken manure, and rice grain have more nitrogen content. The content of nitrogen is very influenced by the process of composting because microorganisms requiring nitrogen for the maintenance and formation of body cells [11], that it will easy for degradation organic matter [12]. Reported that uncomposted poultry manure is not recommended in horticulture because to avoid contamination of edible plants part [13, 14].

Physical properties

During the composting process a physical change in the compost as shown in (Figure 2). The mature or otherwise compost can be detected by the changing colour to brown, by a pleasant odour [15]. The final physical condition of compost are such as:

Moisture content

Moisture content is an important variable in composting process in order for the bacteria to assimilate their nutrients

Table 1: Elemental Analysis of Raw Materials Before Composting

Parameter	Rice Grain	Chicken Manure	Cow Dung	Coffee Husk
рН	6.27	6.48	6.43	5.98
EC (mS cm ⁻¹)	15.67	13.47	10.81	0.9
NH ₄ -N (mg/L)	21.2	14.4	8.3	2.9
NO ₃ -N (mg/L)	29.8	15.8	11.5	4.5
NH ₄ -N: NO ₃ -N Ratio	0.71	0.91	0.72	0.64
PO ₄ (mg/L)	38	19.8	34	6.3
Total Carbon (%)	43.42	19.36	29.55	46.26
Total Nitrogen (%)	2.23	2.15	2.39	0.43
C : N ratio	19.4	9	12	105.21
P ₂ O ₅ (%)	0.14	0.13	0.18	0.23
Moisture Content (%)	5.13	8.13	13.93	8.8

EC: Electrical-conductivity

Table 2: Hemicellulose and lignin of Materials Before Composting

Parameter	Rice Grain	Chicken Manure	Cow Dung	Coffee Husk
Hemicellulose (%)	6.3	8	12.3	14.6
Lignin (%)	20.16	16.50	30.25	41.25

Table 3: Elemental Analysis After Composting

	Compost Standard						Treatment		
Parameter	^a HKORC, 2005	^b Barker., 1997	°Woods End Research Laboratory, 2000	^d SNI, 19- 7030-2004	^e RAL., 1998	^f Yusuf, 2008	⁹ CPHEEO, 2005	T1	T2
рН	5.5-8.5			6.80-7.49				7.20	7.23
EC (mS cm ⁻¹)						2.19-9.32		8.51	8.59
NO ₃ -N (mg/L)		≤ 240						175	71.3
NH ₄ -N (mg/L)		≤ 200						44.5	31.05
NH ₄ -N: NO ₃ -N Ratio	≤ 3.0		°1≤ 0.5 °2≤ 0.6-3.0					0.25	0.43
Total Carbon (%)								36.50	36.75
Total Nitrogen (%)		1.0-3.0		≥ 0.40				1.78	2.03
C : N ratio	≤ 25							20.50	18.10
P ₂ O ₅ (%)				≥ 0.10			≥ 1.0	2.2	1.7
Seed Germination Index (%)	≥ 80		≥ 80					98	81
Moisture Content (%)				≤ 50				7.95	7.07

- a. Hongkong Organic Resource Centre, 2005
- b. Barker, 1997
- c. Woods end research and laboratory, 2000
- c1. Very mature
- c2. Mature
- d. National Standard of Indonesia (SNI), 19-7030-2004
- e. German Waste Association (RAL). 1998
- f. Yusuf, 2008
- g. Central Public Health and Environment Engineering Organization (CPHEEO), 2000
- EC: electrical conductivity (mS cm⁻¹)
- T1: The compost by temperature of 30°C
- T2: The compost by temperature of 40°C

Figure 2: A coffee husk, B: T1 (The compost by temperature of 30°C), C: T2 (The compost by temperature of 40°C)

that could be dissolved in water because it increases the rate of metabolisms. The moisture content for the compost samples were found to be 45.1% and 48.1% for T1 and T2, respectively. Which is between recommended range from 45% to 60% at the initial of composting [16] (Table 4).

Adequate moisture is essential for microbial activity and as a source of oxygen supply. When the moisture content of compost below <45%, it will inhibit microbial metabolism leading the activity of microorganisms will be slow and the degradation phases cannot be completed and was occurred unstable composting in final product. If moisture above (>60%), the water will saturate the pores and interfere oxygenation through the materials compost (Farmer's compost handbook, 2015). The

Table 4: Hemicellulos and Lignin After Composting

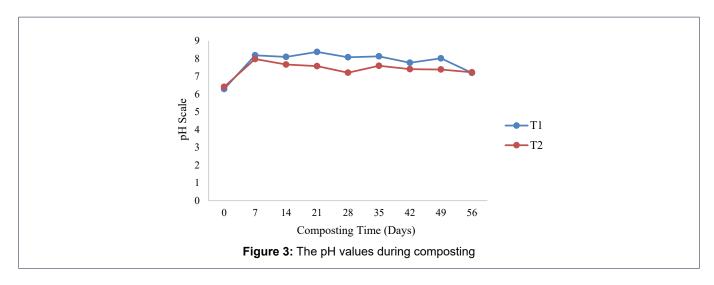
Baramatar	Treatment			
Parameter	T1	T2		
Hemicellulose (%)	9	12		
Lignin (%)	30.25	29.33		

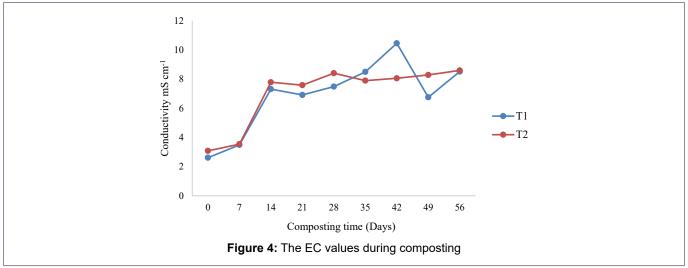
T1: The temperature of 30°C, T2: The temperature of 40°C

final of composting were found to be 7.95% and 7.07%, for T1 and T2, respectively as shown in (Table 5). Epstein et al., (1997) reported that the reduction in the value of moisture content at the end of composting is an indicator degradation of organic matter and mature composting. The moisture content for the maturity compost which is recommended below $\leq 50\%$ [17, 18].

Table 5: The moisture content of initial and after composting

	Initial Composting			After Composting			
Parameter	Farmer`s compost handbook, 2015	T1	T2	SNI, 19-7030-2004	T1	T2	
Moisture Content (%)	45-60	45.1	48.1	≤ 50	7.95	7.07	


T1: The compost by temperature of 30°C, T2: The compost by temperature of 40°C, Farmer's compost handbook, 2015, SNI, 19-7030-2004


pH Scale

The pH values cannot be considered as a good parameter to assess compost maturity [19], but the pH is the key affecting microbial succession and activity during composting. Based on the (Figure 3), the pH values of all composts increased from day 1 until day 7. The increase in pH values indicates that the decomposition of organic matter inside compost medium was occurred and ammonium was formed. The characteristics of the ammonia is alkaline [20]. The pH pattern of (T1) was slightly different from (T2) where the values decreased until reaching slightly neutral condition as reaching from day 7 until day 28 with 7.21, while for (T1) from day 7 until day 14 with 8.1. The decrease in pH values caused by formation of carbon dioxide gas and organic acid during composting [21].

The compost of (T1) where the pH values increased again from day 14 until day 21. This is caused the degradation of organic acids, and the formation of NH₃ from the mineralization of amino acids and protein [22]. The change of the pH values during composting is due to metabolic activities resulted in the production of organic acids and release of ammonia (Nobili and Petrussi, 1988), and showed activity of microorganisms for degradation organic matter [23].

As shown in (Figure 4), the compost of (T1) from day 49 until final composting, where the pH values decreased from 8.02 to 7.20. While for (T2) from day 35 until final composting decreased from 7.60 to 7.23, which indicating that the composts was occurred cooling and maturity on the stationer phase [24], and due to the nitrification process (Huang et al., 2004, Bustamante et al., 2014) leads the nitrate values was

increased (Table 6). [25], (2017) reported that compost needs to be at a pH compatible with requirements or sensitive of the plants. The final pH values which recommended in the range 5.5-8.5 (HKORC, 2005), and 6.80-7.49 (SNI, 19-7030-2004).

Salinity (EC)

The values EC are indicative of concentration of solouble salt in the compost. The general tendency of EC values for all compost was to increase during the composting process. Usually a higher value of EC could be an indication of high nutrient elements presence, or a slower decomposition of the organic matter therefore a lower release mineral salts into the solution in the process of composting [26]. Study by Anandavalli et al., (1998) on recycling of banana pseudo stem as compost also show similar EC increment as the composting proceeds [27].

There was a fluctuating change in EC values observed during the composting process for T1 and T2. The initial EC values both of compost sample (T1 and T2) with 2.61 and 3.08 mS cm⁻¹, respectively which was increased until day 14. The increase could be caused by the release of mineral salts such as phosphate and ammonium ions through the decomposition of organic substances [28, 29]. While the decrease in EC values may be attributed to the reduction of water-solule substances such as organic acids during the composting process [30].

The EC values indicates that all compost will not damage to the crops/vegetables. [31], reported that the salinity of the compost is recommended in the range 2.19-9.32 mS cm⁻¹. The EC values on final composting for T1 with 8.51 mS cm⁻¹ and T2 with 8.59 mS cm⁻¹. The higher and the lower of EC values is not conductive to plant growth. Excessive of EC values in compost can be problematic in growing media, as it can be slow growth, especially in young plant [32], may cause salt damage, and impart to the plant roots are dehydrated resulting in burning phenomenon [33] and could be potentially inhibit plant growth, affect on germination and plant yield. Mamo (1998), reported that majority of plants could not withstand soluble salt content beyond 4000 mS cm⁻¹. While if the low

of EC values will affect the plant absorption and utilization of mineral elements from the soil lead plants cannot grow normally [35].

Total Nitrogen (%)

Nitrogen is the first most important macro nutrient for successful plant production and role in various physiological process. The concentration and availability of nitrogen in compost is a very important factor to be assessed when applied to agricultural systems. The fertilizers are absorded directly by plants or converted into various other forms through the oxidation process [36]. Nitrogen produce rapid early growth, improve fruit quality, enhances the growth of leafy vegetables, it encourages the uptake and utilization of other nutrients including potassium, phosphorous and controls overall growth of plant [37].

Finally, the content nitrogen value all of compost samples (T1 and T2) with 1.78% and 2.03%, respectively. These results are supported with the findings of Barker (1997), which is recommended in the range 1-3%, and over 0.4% (SNI, 19-7030-2004). All compost had total nitrogen over 0.4%, which indicates that compost was matured and it can be used in agriculture without additional nitrogen. The compost over 3% total nitrogen is usually found to be immature and ammoniacal. While, if low the nitrogen values is better used as mulch (Barker, 1997).

Available Nitrogen as NO₃-N

More than 90% of nitrogen in compost is organically bound and the most available form to plants when nitrogen is converted into an inorganic from and exists as NO₃-N [38]. Most plants take nitrogen in the inorganic form as nitrate (NO₃-N) [39].

Based on (Table 6), the nitrate-nitrogen values of all compost increased until compost maturity. The overall nitrate nitrogen content was high and its maximum only 240 mg/L (Barker, 1997). The earlier stages of composting, the nitrate nitrogen values was relatively low because heat and excessive ammonia nitrogen may decreased the nitrifying bacterial activity (Huang

Table 6: Nitrate-Nitrogen Analysis Initial and After Composting

Parameter	Compost Standard	Initial Composting		After Composting	
	Barker, 1997	T1	T2	T1	T2
NO ₃ -N (Mg/L)	≤ 240	4.4	7.5	175	71.3

T1: The compost by temperature of 30°C, T2: The compost by temperature of 40°C

Table 7: Interpretation of available Nitrogen as NO₃-N in compost

NO ₃ -N (mg/L)	Interpretation
0-15	Deficient
16-25	Low
26-50	Satisfactory for seedling and nursery stock
51-80	Satisfactory for pot plants and bedding plants
81-130	Satisfactory for tomatoes, cucumbers and carnations
131-200	
201-300	Unnecessarily high for all crops
Over 300	Excessive

Source: Environment Agency, 2000

et al., 2004). While, at the end of the composting process the nitrate-nitrogen values greater than the concentration of ammonium-nitrogen, this is indicates that the process took place under adequate conditions of aeration and that mature compost was produced [40]. The UK Environment Agency's interpretation of concentrations of available NO₃-N in compost when used in growing Media as shown in (Tabel 7).

Available Nitrogen as NH₄-N

Ammonia-nitrogen concentration was also an indicator of compost maturity. In anaerobic process, the ammonia was low due to slow decomposition. Mostly ammonia-nitrogen present during aerobic composting was derived from rapidly decomposition of waste [41]. When ammonia concentration decreases and nitrate appears in composting material and is considered ready to be used as compost [42].

Based on (Table 8), the amonium-nitrogen values both of compost sample in the range of composting standard. Barker (1997), reported that the maximum ammonium-nitrogen above \leq 200 mg/L. The high ammonium-nitrogen value can be occur phytotoxic, especially on seedlings [43]. The UK Environment Agency's interpretation of NH₄-N concentration in compost when used in growing media as shown in (Table 9).

Carbon to Nitrogen ratio

The carbon to nitrogen ratio used for the degree of maturity in the composting process. Composts with high C:N ratios can damage to plants by tying up available nutrients in the soil [44]. Reduction of carbon was greater as compared to nitrogen in all types of composting process caused microorganisms used carbon as the source of energy and nitrogen for building cell structure in decomposition process [45].

The final of C:N ratio values both of compost sample (T1

and T2) with 20.50 and 18.10, respectively. For a successful composting, the C:N ratios should be considered and it can be used for plants if the C/N ratio below \leq 25 (HKORC, 2005). If the C:N ratios is higher can cause phytotoxins which can burn plant roots and thereby inhibit plant growth due to shortage of nitrogen.

Total Phosphorus

Phosphorus is the second most important macro nutrient after nitrogen that plays significant role in physicological and biochemical reactions such as photosynthsis and transfer characteristics on the plants [46].

Based on (Table 10), the phosphorus values for all compost increased for (T1) which ranging from 0.56% to 2.2% while for (T2) which ranging from 0.76% to 1.7% and which positively correlated with seed germination index as shown in (Table 3). The increasing of phosphorus content might be attributed to the so-called "concentration effect", which occurs when carbon, hydrogen and nitrogen are lost with the exit gas as CO_2 , H_2O and NH_3 , respectively, but phosphorus is retained in the samples [47]. The phosphorus values for final composting which range above 0.10% (SNI, 19-7030-2004) and above \geq 1.0% [48].

The Maturation Stage

The results obtained indicated that all composts have matured within two-months (56 days). By comparison, it was far faster than the anaerobic composting by normal condition (6 months to 1 year) and aerobic composting by normal condition (3 months to 6 months) (Gabhane et al., 2012). Measurement of phytotoxic present in the compost is an accurate and efficient method to check the maturation of compost [49]. A mature compost should not contain toxic compunds on seed germination or plant growth or the environment. Maturity is

Table 8: Ammonium-Nitrogen Analysis Initial and After Composting

Parameter	Compost Standard	Initial Composting		After Composting	
Parameter	Barker, 1997	T1	T2	T1	T2
NH ₄ -N (Mg/L)	≤ 200	4.36	7.16	44.5	31.5

T1: The temperature of 30°C, T2: The temperature of 40°C

Table 9: Interpretation of available Nitrogen as NH,-N in compost

NH ₄ -N (mg/L)	Interpretation
0-20	Low, normal for composts in use
21-50	Normal
51-100	Normal values for unused composts
101-150	Normal values for unused, high nutrient composts
151-200	High may harm young plants
Over 200	Very high

Source: Environment Agency, 2000

Table 10: Total Phosphorus Analysis Initial and After Composting

Parameter	^a SNI. 19-7030-2004	^b CPHEEO. 2000	Initial Composting		After Comp	osting
	-3NI, 19-7030-2004	*CPHEEO, 2000	T1	T2	T1	T2
P ₂ O ₅ (%)	≥ 0.10	≥ 1.0	0.56	0.76	2.2	1.7

a. SNI, 19-7030-2004, b.Central Public Health and Environment Engineering Organization (CPHEEO), 2000, T1: The temperature of 30°C, T2: The temperature of 40°C

Table 11: Changes of hemicellulose and contents after composting

Parameter	lni: comp		After Composting	
	T1	T2	T1	T2
Hemicellulose content (%)	23.3	15	9	12
Lignin content (%)	53	49.5	30.25	29.33

a measure of the degree of completeness of the composting process.

Seed germination index for final compost (T1 and T2) with 98% and 81%, respectively. This is indicates that all compost have matured if seed germination index is higher than 80% (HKORC 2005, Woods End Research Laboratory 2000) which was positively correlated with the NH₄-N:NO₃-N Ratio (Table 11) [50-62]. It is important that compost is allow to fully mature so that it can be bagged and sell to the horticultural market. Immature compost will reheat and spoil if it stored for a period of time. Compost maturity generally relates to the agricultural value of the compost in relation to its effect on the soil and plants response to its application [63-80].

Conclusion

The pH values, C:N ratio, Available nitrate-nitrogen, available ammonium-nitrogen and germination index of the 2 temperature condition showed satisfactory values. In our work, coffee husk was incubation for two-months (56 days), it was faster and good quality if comparison with anerobic and aerobic by normal condition.

References

- 1. Statista (2019) World's largest coffee producing countries in 2018 (In 1.000 60 kilogram bags). [View article]
- Prasad S, Chetty AA (2008) Nitrate-N determination in leafy vegetables: Study of the effects of cooking and freezing. Food Chem 106: 772-780 [View article]
- 3. Nguyen Anh dzung, Tran trung dzung, vo thi Phuong khanh (2013) Evaluation of coffee husk compost for improving soil fertility and sustainable coffee production in rural central highland of Vietnam. *Journal of Resources and environment* 3: 77-82. [View article]
- 4. Shyamala D, Belagali S (2012) Studies on variations in physicochemical and biological characteristics at different maturity stages of municipial solid waste compost. *International Journal of Environmental Sciences* 2: 1984-1997. [View article]
- 5. Houba VJG, I Novozamsky, JJ Van der Lee (1995) Influence of storage of plant samples on their chemical composition. *The Science of the Total Environment* 176: 73-79. [View article]
- Saad NFM, Ma'min NN, Zain SM, Basri NEA, Zaini NSM (2013) Composting of mixed yard and food wastes with effective microbes. *Jurnal Teknologi* 65: 89-95. [View article]
- GARCIA M C V (2006) Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes. *Process Biochemistry* 40: 1438-1443, [View article]
- 8. Huang GF, Wong JWC, Wu QT, Nagar BB (2004) Effect of C/N on composting of pig manure with sawdust. *Waste Management* 24: 805–813. [View article]

- 9. HKORC (2005) compost and soil conditioner quality standards, Hongkong Organic Resource Centre. [View article]
- Salim T Sriharti (2008) Utilization of Industrial waste dodol pineapple as compost and application on tomato plants. Proceeding of national conference teknoin. *Chemical and Tekstil Engineering* pp: 72-77. [View article]
- Dias BO, Silva CA, Higashikawa FS, Roig A, Sanchez-Monedero MA (2010) Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. *Bioresource Technology* 101: 1239-1246. [View article]
- 12. Neilsen GH, Lowery DT, Forge T A, Neilsen D (2009) Organic fruit production in British Columbia. *J. Plant Sci* 89: 677-692. [View article]
- 13. Budi nining widartil, wardah kusuma wardhini, edhi sarwono (2015) The effect C/N ratio of raw materials on making compost from cabbage and banana bark. *Journal of integration process* 5: 75-80. [View article]
- 14. Yadav A, Garg VK (2011) Recycling of organic wastes by employing Eisenia fetida. *Bioresour Technol* 102: 2874-2880. [View article]
- 15. Pilar Román, Maria M Martínez, Alberto Pantoja (2015) Farmer's compost handbook. Regional office for latin America and the carribean Santiago. Food and Agriculture organization of the united stations. [View article]
- Tiquia S M, Tam N F Y, Hodgkiss I J (1996) Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents. *Bioresource Technology* 55: 201-206. [View article]
- 17. Epstein E (1997) The science of composting. Lancaster [View article]
- 18. M De Nobili, F Petrussi (1998) Humification index as evaluation of the stabilization degree during composting. *Journal of Fermentation and Technology* 66: 577-583 [View article]
- 19. Liqiang Meng, Weiguang Li, Shumei Zhang, Chuandong Wu, Wei Jiang et al. (2016) Effect of different extra carbon source on nitrogen loss control and the change of bacterial populations in sawage sludge composting. *Ecological Engineering* 94: 238-243 [View article]
- 20. Seyede Maryam Kharrazi, Habibollah Younesi, Javad Abedini-Torghabeh (2014) Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal: An integrated composting vermicomposting process. *International Biodeterioration and Biodegradation* 92: 41-48 [View article]
- 21. Bustamante MA, Moral R, Bonmatı A, Palatsı J, Sole-Mauri F, Bernal MP (2014) Integrated waste management combining anaerobic and aerobic treatments: a case study. *Waste Biomass Valoriz* 5: 481-490. [View article]
- 22. Ismayana A, Indrasti NS, Suprihatin, Maddu A, Fredy A (2012) Faktor Rasio C/N Awal Dan Laju Aerasi Pada Proses Co Composting Bagasse Dan Blotong. *J Teknik.Industri Pertanian* 22: 173-179. [View article]
- 23. EG Sa'id (1987) Bioindustri : Penerapan Teknologi Fermentasi. Mediyatama Sarana Perkasa, Jakarta. Judoamidjojo. [View article]
- 24. Noelly de Queiroz Ribeiro, Thiago Pereira Souza, Lívia Martinez Abreu Soares Costa, Cibelli Paula de Castro, Eustáquio Souza Dias et al. (2017) Microbial additives in the composting process. [View article]

- Butler TA, Sikora LJ, Steinhilber PM, Douglass LW (2001) Compost Age and Sample Storage Effects on Maturity Indicators of Biosolids Compost. *In Journal of Environmental Quality* 30: 2141-2148. [View article]
- Anandavalli D, Ramaswami P, Hameed S (1998) Recycling of Banana Pseudostem as compost. *Journal of Ecotoxicol Environmental monitoring* 80: 191-194. [View article]
- M Fang, J W C Wong (1999) Effects of Lime Amendment on Availability of Heavy Metals and Maturation in Sewage Sludge Composting. *Environ Pollut* 106: 83-89. [View article]
- 28. M Gao, F Liang, A Yu, B Li, L Yang (2010) Evaluation of Stability and Maturity during Forced-Aeration Composting of Chicken Manure and Sawdust at Different C/N ratios. *Chemosphere* 78: 614-619. [View article]
- 29. JC Tang, T Kanamori, Inoue T, Yasuta S, Yoshida A, et al. (2004) Changes in Microbial Community Structure during Thermophilic Composting of Manure as Detected by the Quinine Profile Method, Process. *Biochem* 39: 1999-2006. [View article]
- 30. Yusuf M (2008) Composting of khat and related materials as solid waste management option in awaday town. pp 1-56 [View article]
- 31. Stefanie Siebert, Jane Gilbert (2018) Guidelines: Specification for the use of quality compost in growing media. European compost network ECN e.V. Germany [View article]
- 32. Lee SE, Ahn HJ, Youn SK, Kim SM KW (2000) Application effect of food waste compost abundant in NaCL on the growth and cationic balance of rice plant in paddy soil. Kor. J. Soil Sci. Fert. 33, 100-108 [View Article]
- 33. Barker AV (1997) Composition and Uses of Compost, Agricultural Uses of By-Products and Wastes ASC Symposium Series. *American Chemical Society* 668:140-162. [View Article]
- 34. Mamo M (1998) Utilization of municipial solid waste compost for crop production. *University of Minnesota Extension Service*. [View Article]
- 35. Chongyang Sun, Ke Zhao, Xing Chen, Xiaohui Wang (2017) Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago. IOP Conference Series: *Earth and Environmental Science*. [View Article]
- 36. Cheng-wei Liu, Yu Sung, Bo-Ching Chen, Hung-yu Lai (2014) Effects of nitrogen fertilzers on the growth and nitrate content of lettuce (*Lactuca sativa* L). *International Journal of Environmental Research and Public Health*. [View Article]
- 37. Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. *Current opinion in plant biology* 25: 10-16. [View Article]
- Fricke K, Vogtmann H (1994) Compost Quality: Physical Characteristics. Nutrient Content, Heavy Metals and Organic Chemicals, Toxicological and Environmental Chemistry 43: 95-114. [View Article]
- 39. King BJ, Siddiqi MY, Glass ADM (1992) Studies of the uptake of nitrate in barley Estimation root cytoplasmatic nitrate concentration using reductase-activity-Implications for nitrate influx. *Plants Physiology* 99: 1582-1589. [View Article]
- 40. Sánchez-Monedero MA, Roig A, Parades C, Bernal MP (2001) Nitrogen transformation during the organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. *Bioresource Technology* 78: 301-308. [View Article]

- 41. Muhammad Khalid Iqbal, Rauf Ahmed Khan, Amana Nadeem and Anwar Hussnain (2012) Comparative Study of Different Techniques Of Composting And Their Stability Evaluation In Municipal Solid Waste. *J.Chem.Soc.Pak* 34: 273-282. [View Article]
- 42. Finstein MS, Miller FC (1985) Principles of composting leading to maximation of decomposition rate, odour control and cost effectiveness. In JKR Gasser, (Ed) Composting of Agricultural and other wastes. *Oxford Elsevier London*. [View Article]
- Britto DT, Kronzucker HJ (2002) NH₄⁺ toxicity in higher plants: A critical review. *Journal of Plant Physiology* 159: 567-584. [View Article]
- 44. Biey EB, Mortier H, Verstraete W (2000) Nitrogen transfer from grey municipal solid waste to high quality compost. *Bioresource Technology* 73: 47-52. [View Article]
- 45. Stofella PJ, Kahn BA (2001) Compost utilization in horticultural cropping systems. Boca Raton, FL, USA: *Lewis Publishers*. [View Article]
- 46. Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effect of Phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L). *AmerEurasian J. Agri. Environ. Sci* 3: 822-828. [View Article]
- 47. Wei Y, Zhao Y, Xi B, Wei Z, Li X et al. (2015) Changes in phosphorus fractions during organic wastes composting from different sources. *Bioresource Technology* 189: 349-356. [View Article]
- 48. Central Public Health and Environment Engineering Organization (CPHEEO) (2000) Government of India, Manual on Municipal Solid Waste Management, New Delhi, India. Pp:132. [View Article]
- 49. Yee van fan, chew tin lee, chee who leow, lee suan chua, Mohamad roji sarmidi et al. (2016) Physico-chemical and biological changes during co-composting of model kitchen waste, rice bran and dried leaves with different microbial inoculants. *Malaysian journal of analytical sciences* 20: 1447-1457 [View Article]
- 50. William F, Brinton (2000) Compost Quality Standards & Guidelines. Woods End Research Laboratory, Inc. New York State Association of Recyclers. [View Article]
- Gaur AC (1979) Bulky Organic manures and crop residues. In: Tandon H. L. S, Ed, Fertilizers, Organic manures, recyclable waste and biofertilizers. [View Article]
- 52. Inoko A, Sugahara K, Harada Y (1979) On some organic constituents of city refuse compost produced in Japan. *Soil science and plant nutrition* 25: 225-234. [View Article]
- 53. Association of Official Agriculture Chemists (2002) Official methods of analysis of AOAC international. [View Article]
- 54. Biddapa CC (1998) Organic manure from coffee husk: comparison of technologies for organic manure from plantation wastes. *Journal of Plantation Crop* 26: 120-126. [View Article]
- 55. (2003) Compost Testing and Analysis Service-Interpretation of Results. Bord na Mona, Newbridge, Co. Kildare, Ireland. [View Article]
- 56. CCME (2005) Guidelines for compost quality, Canadian council of the ministers of the environment, Ministry of public works and government services, Canada. *Cat No.* PN1341. [View Article]
- 57. DN Alsam, W Horwath, JS vander Gheyns (2008) Comparison of Several Maturity Indicators for Estimating Phytotoxicity in

- Compost Amended Soil. *Waste Manage* USA 28: 2070-2076. [View Article]
- 58. Diaz LF, Savage GM, Eggerth LL, Golueke CG (1993) Composting and recycling municipal solid waste. Boca Raton, FL, USA: Lewis Publishers [View Article]
- 59. (2000) An Assessment of the Quality of Waste Derived Composts Produced by a Range of Processes. Environment Agency, Research and Development Technical Report pp: 229. [View Article]
- Epstein EL, Taylor JM and Chancy RL (1976) Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties. *Journal of Environmental Quality* 5: 422-426. [View Article]
- 61. RV Misra, RN Roy and H Hiraoka (2003) FAO On-Farm composting methods. *Land and water discussion paper* Rome. [View Article]
- Frossard E, Skrabal P, Sinaj S, Bangerter F, Traore O(2002)
 Forms and exchangeability of inorganic phosphate in composted solid organic wastes. *Nutr Cyd Agroecosys* 62: 103-113. [View Article]
- 63. Wilson GB (1989) Combining raw materials for composting. *Biocycle* August: 82-85. [View Article]
- 64. German Waste Association (RAL) (1998) Environment Label: Blue Angel Product Requirements- Soil Ameliorants /Adju-vants made from Compost. RAL Deutsches Institut fur Gütesicherung und Kennzeichnung. [View Article]
- 65. Getahun T, Nigusie A, Entele T, Van Gerven T, Van der Bruggen B et al. (2012) Effect of turning frequencies on composting biodegradable municipial solid waste quality. *Resources Conservation and Recycling* 65: 79-84. [View Article]
- 66. Ghorbani R, Wilcockson S, Leifert C (2006) Alternative treatments for late blight control in organic potato: Antagonistic micro-organisms and compost extracts for activity against Phytophthora infestans. *Potato research* 48: 181-189. [View Article]
- 67. Iglesias-Jimenez E (2001) Nitrogen availability from a mature compost determined by the 15N isotope dilution method. *Soil Biology & Biochemistry* 30: 409-412. [View Article]
- 68. Nelson NO, Janke RR (2007) Phosphorus sources and management in organic production systems. *HortTechnology* 17: 442-454. [View Article]

- 69. Ochwoh VA, Claassens AS, de Jager PC (2005) Chemical changes of applied and native phosphorus during incubation and distribution into different soil phosphorus pools. *Commun Soil* Sci Plant Anal 36: 535-556. [View Article]
- 70. Ozanne PG, Shaw TC (1968) Advantages of recently developed phosphate sorption tests over the older extractant methods of soil phosphate. *International Social Science Congress Trans 9th* (Adelaide) 2: 273-380. [View Article]
- 71. Pan I, Sen S (2013) Microbial and physico-chemical analysis of composting process of wheat straw. *Indian Journal of Biotechnology* 12: 120-128. [View Article]
- Perez DV, Alcantara S, Ribeiro CC, Pereira RE, Fontes GC, et al. (2007) Composted municipal waste effects on chemical properties of a Brazilian soil. *Bioresour Technol* 98: 525-533. [View Article]
- 73. Richard T (1996) The effect of lignin on biodegradability. *Cornell composting* [View Article]
- 74. Shah Jahan Leghari, Niaz Ahmed Wahocho, Ghulam Mustafa Laghari, Abdul Hafeez Laghari, Ghulam Mustafa Bhabhan, et al. (2016) Role of nitrogen for plants growth and development: A review. *Advances in Environmental Biology* Pages: 209-218. [View Article]
- THAI Agricultural Standard (2005) Compost. National Bureau of Agricultural commodity and Food standards. Ministry of Agriculture and Cooperatives. Thailand. TAS 9503-2005. ISBN 947-403-339. [View Article]
- 76. TMECC, in: JWC Wong, et al. (Eds) (2002) Test methods for the examination of compost and composting, *The US composting council* [View Article]
- 77. Tome Junior JB (1997) Manual para interpretação de análise de solo. *Guaíba: Livraria e Editora Agropecuaria* pp. 246. [View Article]
- 78. (2003) US Composting Council, STA Test Parameters, Retrieved from [View Article]
- 79. Yu H, Jiang J, Zhao Q, Wang K, Zhang Y, et al. (2015) Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation. *Bioresour Technol* 193: 1-7. [View Article]
- 80. Zucconi F, de Bertoldi M (1987) Compost specification for the production and characterization of compost from municipal solid waste. In: Compost production, Quality and Use. (Eds) M de Bertoldi, et al. *Elsevier Applied Science* p. 30-50. [View Article]

Citation: Harada H (2020) Improving Coffee Husk Compost Quality. J Nutr Diet Pract 4: 001-009.

Copyright: © 2020 Harada H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.