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 Abstract
We have computed the term symbols resulting from the coupling of angular momenta of both spin and orbital from the ground state electron 
configuration. Configurations of equivalent electrons present challenges and were handled by the group theoretical methods. Terms are the 
combined values of L and S while the combined values of L, S and J defines the level.
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Introduction
Spectroscopic term symbols are very important in classifying 
the electronic states of atoms and molecules particularly in 
physical and inorganic chemistry [1-4]. There is a vast amount 
of information on the topic of term symbols and techniques 
for obtaining these terms in the literature. Many authors gave 
credit to such textbooks as Cotton and Wilkinson [5] as well as 
Douglas and McDaniel [6] for the treatment of the topics and 
the application to transition metal complexes in the advent of 
the crystal and ligand field theories. Cautionary measure must 
be used as pointed out by Phillips and Williams [7] in the use of 
the terminologies: “terms”, “state”, “level” and “microstate”. 
Meena et. al. [8] presented their work on the generating term 
symbols of electrons in f-orbitals of transition metal ions. Hyde 
[9] gave comparative methods for obtaining terms that include 
the configuration of d- and f-orbitals. Tuttle [10] introduced 
repetitive rules that must be adopted in order to obtain the terms 
of interest. Gorman [11] gave the rules for writing the Russel-
Saunders terms in the ground state. McDaniel [12] introduced 
spin factoring technique for obtaining terms in atoms and 
molecules. The alternative mathematical technique of Xu and 
Dai [13] although gave correct terms it is just as complicated. 
Most of these techniques are very useful but some are rather 
cumbersome and not user friendly for chemistry students. In 
this review we take the students through the familiar route 
starting from the basic electron configuration that they have 
mastered. The caveat here is the algebra and we present the 
necessary algebraic series to ease the calculations.

The potential energy plot for a stable atom has negative total 
energy. An electron in a given quantum state and in the presence 
of strong magnetic field is described completely by a set of 

four quantum numbers (n, l, ml, ms). The first three quantum 
numbers in the set describes the spatial distribution and the 
last describes the spin state of the electron. n is the principal 
quantum number and it describes the size or the energy level 
of the shell (or atom). l is the azimuthal or angular momentum 
quantum number and it describes the shape of the orbital 
or the subshell. ml is the magnetic quantum number and it 
describes the spatial orientation or direction of the orbital. The 
fourth quantum number ms is the spin quantum number and 
it describes the spin orientation of the electron (symbolically 
represented by +1/2 or -1/2). Finally, “Pauli Exclusion 
Principle” established that no two electrons in a many electron 
atom could have the same set of the four quantum numbers. 

Theory provides that for a massive nucleus with many electron 
elements we normally write the Hamiltonian operator as:

  (1)

This Hamiltonian considers a neutral atom and therefore the 
atomic number Z is equal to the number of electrons N. The first 
term is the kinetic energy of the N electrons and the summation 
is over the ith electron (i =1 to N). The mathematical symbol 
∇ is the Laplacian. The second term is the pairwise attractive 
potential energy between the nucleus having charge Ze and 
the electrons in the atom. ri is the distance between the nucleus 
and electron i. The factor (4πε0) is used to express the energy 
in the appropriate SI unit. ε0 is a constant called permittivity 
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In addition, if the nucleus has nuclear spin say I, then that 
nuclear spin magnetic moment will interact further with the 
electronic spin and orbital magnetic moments to generate 
hyperfine structures. This new scheme is F = I + J.

Spin-Orbit coupling may be explained by recognizing that 
electron orbital motion generates magnetic dipole just like a 
spinning electron generates also magnetic dipole. These dipoles 
can interact with one another because each electron performs 
these two motions. This interaction is called the dipole-dipole 
interaction. The coupling of the orbital motion with the spin 
motion means that the fourth term in the Hamiltonian in 
equation (1) is problematic depending on the strength of the 
coupling. The solutions to the Hamiltonian operator H, which 
is called the wave-functions cannot be Eigen-functions of the 
orbital separately as well as the spin separately, instead it is the 
wave-function of the coupled orbital and spin. Therefore the 
vector sum of L and S called J must be considered.

L-S or Russell Saunders Coupling 

We present the scheme below in addition with the overall 
symbolic designation for the Atomic Term Symbol (ATS) or 
Atomic (Spectroscopic) Term symbol for the L-S coupling:

ATS = n 2S+1LJ					      (2)

The quantum number n retains the same meaning and has been 
define earlier. The total orbital angular momentum L is written 
as:

L = Σ li = (l1 + l2), (l1 + l2-1) …|l1 - l2| 	 Clebsch-Gordan 
Series					     	  (3)

It is important to note that L has non-negative value and it is 
obtained by coupling the individual orbital angular momenta 
using the Clebsch-Gordon mathematical series that is defined 
above. The maximum value of L is (l1 + l2), this is when l1 and 
l2 are in the same direction; the absolute value |l1 - l2| ensures 
that L is non-negative and it is the lowest value where l1 and 
l2 are opposed in direction. This definition gives the possible 
values for L as: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. and the 
corresponding orbital designations are: S, P, D, F, G, H, I, K, 
L M, and N respectively. It could be noted in the ordering that 
the J term is omitted. This avoids the confusion with the total 
(coupled) angular momenta of the orbital and spin notation.

The superscript (2S+1) that precedes L is called the Spin 
multiplicity. The total spin angular momentum S is written as:

S = Σ Si = (s1 + s2), (s1 + s2-1) …|s1 - s2|		  (4)

This definition gives the possible values for S as: 0, ½, 1, 3/2, 
2, 5/2, 3, etc. and the corresponding spin multiplicities, (2S+1) 
are: singlet, doublet, triplet, quartet, quintet, sextet and septet 
respectively.

The subscript J in the term symbol is the total (coupled) orbital 
- spin angular momentum and it is sometimes called Spin-orbit 
coupling. J is written as:

J = Σ (L+S) = (L+S), (L+S-1)…|L-S|  	              (5)

Before we can begin to write out the term symbols, we 

of vacuum. The summation is over all the electrons. The third 
term is the pairwise potential energy for the inter-electron 
repulsions. The pairwise summation avoids double counting 
by eliminating the rji, rii and rjj terms. rij is the inter-electron 
pair distance. The fourth term is the interaction between the 
electronic orbital angular momentum L and the electronic 
spin angular momentum S.  is the spin-orbit parameter. This 
fourth term is referred to as the spin-orbit interaction and it 
is explained in more details later in this section. In fact, the 
third term in the Hamiltonian which is the Coulomb repulsion 
between pairwise electrons and the fourth term is given 
special consideration in many books and review articles [1-
3]. The fifth term is the application of external magnetic field 
called Zeeman Effect. In Zeeman Effect both orbital and spin 
moments are considered and therefore we use the magnetic 
field perturbation to split the individual levels into states.

L-S or Russell Saunders Coupling and j-j Coupling

The first two terms (alone) in the Hamiltonian are degenerate 
for all the atomic states that have the same electron 
configuration. If we consider the first three terms then the 
degeneracy between the states with different L or different 
S or both are lifted. If we add the fourth term the J levels 
(resulting from the L-S coupling) are further split into different 
J values. The addition of the fifth term will split each J level 
into MJ sublevels. This fifth term splitting will result in (2J+1) 
sublevels. The scheme that we just presented is the case 
where the third term in the Hamiltonian is stronger or larger 
than the Spin-Orbit interaction fourth term. In the case of L-S 
coupling that will be given extensive treatment in this review 
paper we add the orbital angular momentum of each electron 
to form the total orbital angular momentum L. In a similar 
manner we add the spin angular momentum of each electron 
to form the total spin angular momentum S. Next, we combine 
the L and the S to form total (coupled) spin-orbital angular 
momentum J. This is the Russell-Saunders Coupling (or L-S 
Coupling). L-S coupling involves elements having low atomic 
number, Z. For these elements, the individual orbital angular 
momentum vectors li’s are strongly coupled together and are 
gyrating or precessing very fast around the total orbital angular 
momentum L.

On the other hand there is the j-j coupling scheme. This 
coupling scheme involves elements with higher atomic 
number, typically Z greater than 40. j-j coupling is when the 
spin-orbit interaction is very strong. For this reason the orbital 
l and spin s angular momentum of individual electrons are first 
added to give total angular momentum of that electron j = l + 
s.  Next the total angular momentum of each electron is added 
to give the total angular momentum J = ∑i ji of the element. 
The implication of large atomic number is that it will result in 
increase in the average speed of the electrons. In this regime, 
as the ratio of the average speed of electrons to the speed of 
light u/c, increases then relativistic effect such as the spin-
orbit interaction increases. When this happens, the spin-orbit 
interaction that makes up the fourth term in the Hamiltonian 
supersedes the third term (inter-electronic Coulomb repulsion). 
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must distinguish between two different types of electron 
configuration namely equivalent and non-equivalent electrons.

Non-Equivalent Electrons
These are electrons that belong to different n, l, subgroups; that 
is, electrons having at least either different n or l. The n and l 
are the atomic principal quantum number and orbital angular 
momentum quantum number respectively. For example, for 
each electron occupying the p, d, f,… orbital or 2p1, 3p1, 4p1,… 
we see at least one of the n or the l values are different. For 
non-equivalent electrons the Pauli’s Exclusion Principle is 
always satisfied.

Equivalent Electrons
These are electrons that belong to the same n, l subgroups; that 
is, the electrons that have the same values of n and l. Examples 
of equivalent electrons are np2, np3, np4, … nd2, nd3, nd4, nd5, 
nd6, …etc. For the electronic configuration just described, 
some of the states that are generated when the electrons are 
non-equivalent vanish due to Pauli’s Exclusion Principle.

Energy Levels - Hund’s Rule for The Term Symbols 
Arrangement

We provide below in hierarchy the arrangement of the Terms 
energy levels according to Hund’s Rule. In addition, we provide 
the allowed transitions referred to as selection rules for the total 
spin angular momentum S, total orbital angular momentum L, 
and total (coupled) spin-orbital angular momentum J.

1.	 The state that has the highest spin multiplicity has the 
lowest energy.

2.	 If two states have the same spin multiplicity, then the 
state with the greater L value will be lower in energy.

3.	 If two or more terms are the same following rules 1 
and 2 then for the orbital which is less than half filled, 
the state with small J value will be lower in energy, 
whereas if the orbital is half or more than half filled, the 
state with largest J value will be lower in energy.

Selection Rules:

Selection rules are very important when considering certain 
transitions. The rules governing these transitions are as follow:

ΔS = 0						                  (6)

ΔL = 0, ± 1; however, L = 0 ←⁄→ L =0 (i.e., not allowed)  (7)

ΔJ = 0, ± 1;   however, J = 0 ←⁄→ J =0 (i.e., not allowed)   (8)

Δl = ± 1 and Δn is any value (no restriction)		          (9)

The sign ←⁄→ indicates a forbidden transition

Terms from Non-Equivalent and Equivalent Electrons 
Using L-S Coupling

We now provide few examples to illustrate the terms resulting 
from L-S coupling of one, two and three electrons. We give 
one-electron example to represent atoms having the electron 
configurations ns1, np1, nd1, etc., two-electron example to 

represent atoms with the electron configurations ns1np1, 
np1nd1, nd1nf1, etc. where n takes any value and np2, nd2, nf2, 
etc., and three-electron example to represent atoms with the 
electron configurations ns1np1nd1, np1nd1 nf1, etc. where n 
takes any value and (n-1)p1np1nd1, (n-1)d1nd1nf1, etc. All the 
examples provided are for the non-equivalent electrons except 
the np2, nd2, nf2, etc. We are confident that there is no confusion 
in following these examples.

Calculations Involving Non-Equivalent Electrons

Example #I: Calculate the L, S, and J values for the 
configuration: 1s22s22p63s13p1. (Note that this configuration 
is an excited state of a magnesium atom). The electrons of 
interest here are in the: 3s13p1

Answer:

This is a problem of interaction of one electron in the s-orbital 
and one electron in the p-orbital. Let the s-orbital electron be 
#1 and the p-orbital electron is #2. Therefore:

Electron #1:	 n1 =3, l1 = 0, and s1 = ½ 

Electron #2:	 n2 =3, l2 = 0, and s2 = ½  
 
S = (s1 + s2), (s1 + s2-1) …|s1 - s2|     (I-1a) 

= (½ + ½), …. |½ - ½|    (I-1b) 
=       1,        0    (I-1c) 

 
2S+1 = 2(1) + 1     2(0) + 1    (I-2a) 
         = 3 (Triplet)       1 (Singlet)   (I-2b) 
 
L = (l1 + l2), (l1 + l2-1) …|l1 - l2|    (I-3a) 
 
   = (0 + 1),   |0 – 1|    (I-3b) 
   =     1 (this corresponds to a P - term state)  (I-3c) 
 
J = (L+S), (L+S-1)…|L+S|     (I-4a) 
 
   = (1 + 1), (1 + 1 -1), … |1 – 1| (Case#1 L=1, S = 1) (I-4b) 
   =      2,  1,     0    (I-4c) 
 
   = (1 + 0), (1 + 1 -0), … |1 – 0| (Case#2 L=1, S = 0) (I-4d) 
   =      1       (I-4e) 
 
The Term Symbols are:  3P2,1,0 and 1P1 or written detail: 3P2, 3P1, 3P0 and 1P1 
 

Example #II: Find the Term symbols for the interaction of one 
electron in a d-orbital and one electron in an f-orbital.
Answer: 
Electron #1: l1 = 2, and s1 = ½  
Electron #2: l2 = 3, and s2 = ½  
 
S = (s1 + s2), (s1 + s2-1) …|s1 - s2|    (II-1a) 
 

= (½ + ½),  …. |½ - ½|   (II-1b) 
= 1,  0   (II-1c) 

 
2S+1 = 2(1) + 1      2(0) + 1   (II-2a) 

=3 (Triplet)       1 (Singlet)   (II-2b) 
 
L = (l1 + l2), (l1 + l2-1) …|l1 - l2|    (II-3a) 
 

= (2 + 3), (2 + 3 -1), (2 + 3 -2), … |2 – 3|  (II-3b) 
=     5,  4,  3, 2, 1  (II-3c) 
       H  G F D P (L states) (II-3d) 
 
J = (L+S), (L+S-1)…|L-S|     (II-4a) 
 
= (5 + 1), (5 + 1 -1), … |5 – 1| (Case#1 L = 5, S = 1) (II-4b) 
= 6, 5,  4    (II-4c) 
 
= (4 + 1), (4 + 1 -1), … |4 – 1| (Case#1 L = 4, S = 1) (II-4d) 
=      5,       4,  3    (II-4e) 
 
= (3 + 1), (3 + 1 -1), … |3 – 1| (Case#1 L = 3, S = 1) (II-4f) 
=     4,       3,  2    (II-4g) 
 
= (2 + 1), (2 + 1 -1), … |2 – 1| (Case#1 L = 2, S = 1) (II-4h) 
= 3, 2, 1    (II-4i) 
 
= (1 + 1), (1 + 1 -1), … |1 – 1| (Case#1 L = 1, S = 1) (II-4j) 
= 2, 1, 0    (II-4k) 
 
= (5 + 0), (5 + 0 -1), … |5 – 0| (Case#2 L = 5, S = 0) (II-4l) 
= 5      (II-4m) 
 
= (4 + 0), (4 + 0 -1), … |4 – 0| (Case#2 L = 4, S = 0) (II-4n) 
= 4 
 
= (3 + 0), (3 + 0 -1), … |3 – 0| (Case#2 L = 3, S = 0) (II-4o) 
 = 3      (II-4p) 

 
= (2 + 0), (2 + 0 -1), … |2 – 0| (Case#2 L = 2, S = 0) (II-4q) 
 = 2      (II-4r) 
 
= (1 + 0), (1 + 0 -1), … |1 – 0| (Case#2 L = 1, S = 0) (II-4s) 
 = 1      (II-4t) 
 
The Term symbols are: 3H6,5,4;  3G5,4,3; 3F4,3,2; 3D3,2,1; 3P2,1,0; 1H5; 1G4; 1F3; 1D2; 1P1 
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Answer: 
Electron #1: l1 = 2, and s1 = ½  
Electron #2: l2 = 3, and s2 = ½  
 
S = (s1 + s2), (s1 + s2-1) …|s1 - s2|    (II-1a) 
 

= (½ + ½),  …. |½ - ½|   (II-1b) 
= 1,  0   (II-1c) 

 
2S+1 = 2(1) + 1      2(0) + 1   (II-2a) 

=3 (Triplet)       1 (Singlet)   (II-2b) 
 
L = (l1 + l2), (l1 + l2-1) …|l1 - l2|    (II-3a) 
 

= (2 + 3), (2 + 3 -1), (2 + 3 -2), … |2 – 3|  (II-3b) 
=     5,  4,  3, 2, 1  (II-3c) 
       H  G F D P (L states) (II-3d) 
 
J = (L+S), (L+S-1)…|L-S|     (II-4a) 
 
= (5 + 1), (5 + 1 -1), … |5 – 1| (Case#1 L = 5, S = 1) (II-4b) 
= 6, 5,  4    (II-4c) 
 
= (4 + 1), (4 + 1 -1), … |4 – 1| (Case#1 L = 4, S = 1) (II-4d) 
=      5,       4,  3    (II-4e) 
 
= (3 + 1), (3 + 1 -1), … |3 – 1| (Case#1 L = 3, S = 1) (II-4f) 
=     4,       3,  2    (II-4g) 
 
= (2 + 1), (2 + 1 -1), … |2 – 1| (Case#1 L = 2, S = 1) (II-4h) 
= 3, 2, 1    (II-4i) 
 
= (1 + 1), (1 + 1 -1), … |1 – 1| (Case#1 L = 1, S = 1) (II-4j) 
= 2, 1, 0    (II-4k) 
 
= (5 + 0), (5 + 0 -1), … |5 – 0| (Case#2 L = 5, S = 0) (II-4l) 
= 5      (II-4m) 
 
= (4 + 0), (4 + 0 -1), … |4 – 0| (Case#2 L = 4, S = 0) (II-4n) 
= 4 
 
= (3 + 0), (3 + 0 -1), … |3 – 0| (Case#2 L = 3, S = 0) (II-4o) 
 = 3      (II-4p) 

 
= (2 + 0), (2 + 0 -1), … |2 – 0| (Case#2 L = 2, S = 0) (II-4q) 
 = 2      (II-4r) 
 
= (1 + 0), (1 + 0 -1), … |1 – 0| (Case#2 L = 1, S = 0) (II-4s) 
 = 1      (II-4t) 
 
The Term symbols are: 3H6,5,4;  3G5,4,3; 3F4,3,2; 3D3,2,1; 3P2,1,0; 1H5; 1G4; 1F3; 1D2; 1P1 
 

Example #III: Calculate the L, S, and J for the ground state 
of sodium atom.

Answer:

Here there is only one electron. It is therefore trivial. This 
example will apply to all the group IA elements of the periodic 
table. The only difference among these elements is the 
principal quantum number n that does not play any part in the 
computation. The electron configuration for sodium atom is: 
[1s22s22p6]3s1.
 
Electron#1: l1 = 0, s1 = ½ 
 
S = s1 = ½      (III-1) 
 
2S+1 = 2(½) + 1 = 2 (doublet)    (III-2) 
 
L = l1 = 0 = S      (III-3) 
 
J = L + S = (0 + ½), …| 0 – ½| = ½    (III-4) 
 
Therefore, the Term Symbol is: 2S1/2 
 
Example #IV

Calculate the spectroscopic term symbol for the electronic 
configuration 2p13p14d1 system.
Answer: 
Electron #1: n1 = 2, l1 = 1, and s1 = 1/2  
Electron #2: n2 = 3, l2 = 1, and s2 = 1/2  
Electron #3: n3 = 4, l3 = 2, and s3 = 1/2  
 We couple electron #1 and electron #2 first and we couple 
the resulting states with electron #3 accordingly. 
Step #1: Coupling electron #1 and electron #2 
 
S = (s1 + s2), (s1 + s2-1) …|s1 - s2|    (IV-1a) 
 
= (½ + ½),  …. |½ - ½|    (IV-1b) 
= 1,  0    (IV-1c) 
 
2S+1 = 2(1)+1 2(0)+1     (IV-2a) 
=3 (Triplet) 1 (Singlet)    (IV-2b) 
 
L = (l1 + l2), (l1 + l2-1) …|l1 - l2|    (IV-3a) 
 
=     2,  1,     0    (IV-3b) 
D  P     S (L states)  (IV-3c) 
 
From this coupling we obtain the states: 3D; 3P; 3S; and 1D; 1P; 1S. 
The reader is left to compute J values for each of the computed terms as exercise. 
 
Step #2: Coupling each of the six states with electron #3 
 
Next we couple each of the six states with the 4d1 electron (i.e. electron #3) as follow: 
 
3D (l = 2, s = 1) and 4d1 (l3 = 2, and s3 = ½) 
 
S = (s + s3), (s + s3-1) …|s - s3|    (IV-4a) 
 
= (1 + ½), …. |½ - ½|     (IV-4b) 
=     3/2,  ½     (IV-4c) 
 
2S+1 = 2(3/2)+1  2(½)+1    (IV-5a) 
          = 4 (quartet) 2 (doublet)   (IV-5b) 
 
L = (l + l3), (l + l3-1), (l + l3-2) …|l - l3|   (IV-6a) 
 
= 4, 3, 2, 1, 0   (IV-6b) 
   G F D P    S (L states) (IV-6c) 
 
From this coupling we obtain the states: 4G; 4F; 4D; 4P; 4S; 2G; 2F; 2D; 2P; 2S. 
The reader is left to compute J values for each of the computed terms as exercise. 
 
Similarly, we couple 3P (l =1, s =1) and 4d1 (l3 = 2, and s3 = ½) 
will give: 
 
4F; 4D; 4P; and 2F; 2D; 2P     (IV-7) 
 
Coupling 3S (l = 0, s =1) and 4d1 (l3 = 2, and s3 = ½) will give: 
 
4D and 2D      (IV-8) 
 
Similarly, we obtain the following results by coupling the singlet states with the 4d1. 
 
1D (l = 2, s = ½) and 4d1 (l3 = 2, and s3 = ½) will give: 
2G, 2F, 2D, 2P, 2S      (IV-9) 
 
1P (l = 1, s = ½) and 4d1 (l3 = 2, and s3 = ½) will give: 
 2F, 2D, 2P      (IV-10) 
 
1S (l = 0, s = ½) and 4d1 (l3 = 2, and s3 = ½) will give: 2D (IV-11) 
 
The sum total of the 2p13p14d1 coupling gives the terms: 
 
4G;  24F;  34D;  24P;  4S;  22G;  42F;  62D;  42P;  22S  (IV-12) 
 

Answer: 
Electron #1: n1 = 2, l1 = 1, and s1 = 1/2  
Electron #2: n2 = 3, l2 = 1, and s2 = 1/2  
Electron #3: n3 = 4, l3 = 2, and s3 = 1/2  
 We couple electron #1 and electron #2 first and we couple 
the resulting states with electron #3 accordingly. 
Step #1: Coupling electron #1 and electron #2 
 
S = (s1 + s2), (s1 + s2-1) …|s1 - s2|    (IV-1a) 
 
= (½ + ½),  …. |½ - ½|    (IV-1b) 
= 1,  0    (IV-1c) 
 
2S+1 = 2(1)+1 2(0)+1     (IV-2a) 
=3 (Triplet) 1 (Singlet)    (IV-2b) 
 
L = (l1 + l2), (l1 + l2-1) …|l1 - l2|    (IV-3a) 
 
=     2,  1,     0    (IV-3b) 
D  P     S (L states)  (IV-3c) 
 
From this coupling we obtain the states: 3D; 3P; 3S; and 1D; 1P; 1S. 
The reader is left to compute J values for each of the computed terms as exercise. 
 
Step #2: Coupling each of the six states with electron #3 
 
Next we couple each of the six states with the 4d1 electron (i.e. electron #3) as follow: 
 
3D (l = 2, s = 1) and 4d1 (l3 = 2, and s3 = ½) 
 
S = (s + s3), (s + s3-1) …|s - s3|    (IV-4a) 
 
= (1 + ½), …. |½ - ½|     (IV-4b) 
=     3/2,  ½     (IV-4c) 
 
2S+1 = 2(3/2)+1  2(½)+1    (IV-5a) 
          = 4 (quartet) 2 (doublet)   (IV-5b) 
 
L = (l + l3), (l + l3-1), (l + l3-2) …|l - l3|   (IV-6a) 
 
= 4, 3, 2, 1, 0   (IV-6b) 
   G F D P    S (L states) (IV-6c) 
 
From this coupling we obtain the states: 4G; 4F; 4D; 4P; 4S; 2G; 2F; 2D; 2P; 2S. 
The reader is left to compute J values for each of the computed terms as exercise. 
 
Similarly, we couple 3P (l =1, s =1) and 4d1 (l3 = 2, and s3 = ½) 
will give: 
 
4F; 4D; 4P; and 2F; 2D; 2P     (IV-7) 
 
Coupling 3S (l = 0, s =1) and 4d1 (l3 = 2, and s3 = ½) will give: 
 
4D and 2D      (IV-8) 
 
Similarly, we obtain the following results by coupling the singlet states with the 4d1. 
 
1D (l = 2, s = ½) and 4d1 (l3 = 2, and s3 = ½) will give: 
2G, 2F, 2D, 2P, 2S      (IV-9) 
 
1P (l = 1, s = ½) and 4d1 (l3 = 2, and s3 = ½) will give: 
 2F, 2D, 2P      (IV-10) 
 
1S (l = 0, s = ½) and 4d1 (l3 = 2, and s3 = ½) will give: 2D (IV-11) 
 
The sum total of the 2p13p14d1 coupling gives the terms: 
 
4G;  24F;  34D;  24P;  4S;  22G;  42F;  62D;  42P;  22S  (IV-12) 
 

The numbers before the terms indicate the number of times the 
particular state is formed by different combinations.

Calculations Involving Equivalent Electrons

Let us treat the case of two equivalent interacting electrons.

Example #V

Calculate the terms resulting from ground state electron 
configuration of carbon or oxygen.

Answer

The electronic configuration is 1s22s22p2 for carbon and 
1s22s22p4 for oxygen. 

Step #1

Make a table of ml values of one electron as row and the ml of 
the second electron as column.

Step #2

Calculate the elements of the square table by adding the two ml 
values. ML= ml1 + ml2
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Step #3

Elements lying on the diagonal of the table are the singlets and 
those occurring on the off-diagonal are the triplets.

Step #4

Use of only the ML values of one side of the diagonal elements 
(zero being the mid-point). The element(s) on the side are 
mirror images. Similarly, make use of only the ML values of 
one side of the off-diagonal elements (the diagonal elements 
represent the mid-line).

Electron #1:	 n1 = 2, l1 = 1, ml1 = (-1, 0, or 1) and s1 = ½ 

Electron #2:	 n2 = 2, l2 = 1, ml2 = (-1, 0, or 1) and s2 = ½ 

ml2\ml1	   |	 -1	  0	 1

	 _______|____________________ 

	    -1	   |	 -2	 -1	 0

		    |		    

	     0	   |	 -1	 0           1

		    |		                

	     1	   |	  0	 1	 2

The absolute values of the diagonal elements are L = 2 and 0 
and they correspond to the singlet states 1D and 1S respectively. 
The off-diagonal elements: -1, 0, 1 belongs to L =1 will be the 
triplet state, that is: 3P.

The total angular momentum quantum number, J can be 
calculated accordingly as:

For 1D: L = 2, S = 0 (singlet), then J = 2: The term symbol is 
1D2

For 1S: L = 0, S = 0 (singlet), then J = 0: The term symbol is 1S0

For 3P: L = 1, S = 1 (triplet), then J = 2, 1, 0: The term symbol 
is 3P2,1,0

Calculations of Terms Involving Equivalent Electrons 
from a generating Formula of Curl and Kilpatrick [4]

Calculating terms resulting from more than two equivalent 
electrons are very complicated. There are many articles written 
on computation of term symbols of equivalent electrons [4-
7]. We will adopt the group theoretical methods of Curl and 
Kilpatrick [4] for this treatment without further proof. We 
reproduce below the generating formula that was presented in 
section III of their paper, highlight the prescribed recipes and 
we appeal to the readers to refer to the paper for details.

 	         (10)

JS(q) is always a polynomial with positive coefficients for all 
positive powers of q. For example: q0 =1 =S; q1 = P; q2 = D; q3 
= F; q4 = G; q5 = H; q6 =I; etc.

N = number of electrons

l = angular momentum (or azimuthal) quantum number of 
each electron

υ = 2l + 1

S = spin quantum number of the desired terms

α = N/2 – S, (this is the number of electron pairs) 

β = 2S, (this is the number of unpaired electrons)

γ = (Nl + 1) – [N(N-2) + 4S2]/4

(2S + 1) = the multiplicity of the spin under consideration

The coefficients of the non-negative powers of q are of interest 
in the generating formula. We disregard the negative powers. 
The generating function JS(q) consists of the product of the 
factor - (1-q)/qγ and the ratio P and D. P is itself a product of 
two series of terms namely: P1(q) and P2(q). D is also a product 
of D1(q) and D2(q) series. P1(q) series of terms (referred to as 
the α sequence) has power of q ranging from (υ + 1) to (υ  + 
1 – α). There are a sum total of (α + 1) terms; exception is if (α 
= 0), then the sequence is omitted. The first term and the last 
term in P1(q) occurs once and every term in between occurs 
twice. P2(q) series of terms (referred to as the β sequence) has 
power of q ranging from (υ – α) to (υ  + 1 – α – β). There are a 
sum total of β terms, each term occurs once and if (β = 0), then 
the sequence is omitted. We reproduce below the four series: 
P1(q), P2(q) D1(q) and D2(q).

P1(q) = (1– qυ+1) (1– qυ)2(1– qυ –1)2 …*(1– qυ+1–α)		
if α = 0, then P1(q) = 1

P2(q) = (1– qυ – α) (1– qυ – α –1)(1– qυ – α –2) …*(1– qυ+1–α – β)	
if β = 0, then P2(q) = 1

D1(q) = (1– q) (1– q2)(1– q3) …*(1– qα)  			 
if α = 0, then D1(q)= 1

D2(q) = (1– q) (1– q2)(1– q3) …*(1– qα + β+1) /(1– qβ+1)

Some useful algebraic series are necessary and available for 
reducing the above polynomials to the final results. Few of 
these are presented below.

(1– qn)/(1– q)  = Σ i q
i 		  i goes from 0 to n-1

(1– q2n)/(1– q2)  = Σ i q
2i 		  i goes from 0 to 2n-2

(1– q3n)/(1– q3)  = Σ i q
3i 		  i goes from 0 to 3n-3

          

          

          

 (1– qmn)/(1– qm)  = Σ i q
mi 		  i goes from 0 to mn-m

(1– qn) = (1– q) (1+ q + q2 + …  +  qn – 1)	 here n is any 
positive value

(1– qn) = (1+ q) (1– q + q2 – q3 + …   – qn – 1)	here n = even

(1+ qn) = (1+ q) (1– q + q2 – q3 + …   + qn – 1)	here n = odd

 Examples:

(1-qn)/(1-q)  = Σ i q
i :i goes from 0 to n-1 and n = 1,2,3,4 …

(1-q2)/(1-q)  = 1 + q
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(1-q3)/(1-q)  = 1 + q + q2

(1-q4)/(1-q)  = 1 + q + q2 + q3

Etc.

(1-q2n)/(1-q2)  = Σ i q
2i :	 i goes from 0 to 2n-2 and n = 

1,2,3,4 …

(1-q4)/(1-q2)  = 1 + q2

(1-q6)/(1-q2)  = 1 + q2 + q4

(1-q8)/(1-q2)  = 1 + q2 + q4 + q6

Etc.

(1-q3n)/(1-q3)  = Σ i q
3i :	 i goes from 0 to 3n-3 and n = 

1,2,3,4 …

(1-q6)/(1-q3)  = 1 + q3

(1-q9)/(1-q3)  = 1 + q3 + q6

(1-q12)/(1-q3)  = 1 + q3 + q6 + q9

Etc.

(1-q4n)/(1-q4)  = Σ i q
4i :	 i goes from 0 to 4n-4 and n = 

1,2,3,4 …

(1-q8)/(1-q4)  = 1 + q4

Etc.

(1-q5n)/(1-q5)  = Σ i q
5i :	 i goes from 0 to 5n-5 and n = 

1,2,3,4 …

(1-q10)/(1-q5)  = 1 + q5

Etc.

(1-qmn)/(1-qm)  = Σ i q
mi : 	 i goes from 0 to mn-m; n = 1,2,3,4 

… n>m; m≠0

(1-qmn)/(1-qm)  = 1 + qm + q2m + q3m + q4m + … qmn-m

Etc.

We will now apply the group theoretical method to work out 
the term symbols of first row transition elements and beyond 
as they present difficulties for students.

For nd1 and nfd9 

In each case: N=1; S=1/2; α=0; β=1; l=2; υ=5; γ=3 and 2S+1 
= 2;

J1/2(q) = [- (1-q) / q3]* [1*(1-q5)] / [1*(1-q)(1-q2) / (1-q2)]  = - (1 
/ q3)(1- q5) = q2 – q-3

Since we consider only the positive powers of q then the only 
term is: 2D

For nf1 and nf13 

In each case: N=1; S=1/2; α=0; β=1; l=3; υ=7; γ=4 and 2S+1 
= 2;

J1/2(q) = - [(1-q) / q4]* [1*(1-q7)] / [1*(1-q)(1-q2) / (1-q2)] = - (1 
/ q4)(1- q7) = q3 – q-4

Again we consider only the positive powers of q and therefore 

the only term is: 2F

For nd2 and nd8 (two electrons under consideration: the two 
electrons are unpaired)

In each case: N=2; S=1; α=0; β=2; l=2; υ=5; γ=4 and 2S+1 = 
3;

J1(q) = -[(1-q) / q4]*[1*(1-q5)(1-q4)] / [1*(1-q)(1-q2)(1-q3) / (1-
q3)] = (q5-1)(q2+1)/q4

	 = q3 + q + q-2 – q-4 ; The resulting terms are: 3F and 3P

For nd2 and nd8 (two electrons under consideration:: the two 
electrons are paired)

In each case: N=2; S=0; α=1; β=0; l=2; υ=5; γ=5 and 2S+1 = 
1;

J1(q) = -[(1-q) / q5]*[(1-q6)(1-q5)*1] / [(1-q)*(1-q2)] = (q5-1)(1 
+ q2 + q4)/q5

	 = q4 + q2 + 1– q-1 – q-3 – q-5 ; The resulting terms are: 
1G, 1D and 1S

For nd3 and nd7 (three electrons under consideration: the three 
electrons are unpaired)

In each case: N=3; S=3/2; α=0; β=3; l=2; υ=5; γ=4 and 2S+1 
= 4;

J3/2(q) = -[(1-q) / q4]*[1*(1-q5)(1-q4) (1-q3)] / [1*(1-q)(1-q2)(1-
q3)(1-q4)/(1-q4)]

= (q5-1)(q2+1) / q4 = q3 + q + q-2 – q-4 ; The resulting terms are: 
4F and 4P

For nd3 and nd7 (three electrons under consideration: two 
paired and one is unpaired)

In each case: N=3; S=1/2; α=1; β=1; l=2; υ=5; γ=6 and 2S+1 
= 2;

J1/2(q) = -[(1-q)/q6]*[ (1-q6)*(1-q5)(1-q4)] / [(1-q)* (1-q)(1-q2)
(1-q3)/(1-q2)]

= (q3+1)(q4–1)( 1 + q + q2 + q3 + q4) / q6

= q5 + q4 + q3 + 2q2 + q - q-2 - 2q-3 - q-4 - q-5 – q-6 ; The terms are: 
2H, 2G, 2F, 22D and 2P

For nd4 and nd6 (four electrons under consideration: four 
unpaired electrons)

In each case: N=4; S=2; α=0; β=4; l=2; υ=5; γ=3 and 2S+1 = 
5;

J2(q) = -[(1-q) / q3]*[1*(1-q5)(1-q4)(1-q3) (1-q2)] / [1*(1-q)(1-
q2)(1-q3)(1-q4) (1-q5)/(1-q5)]

= - (1 / q3)(1- q5) = q2 – q-3 ; The term is: 5D

For nd4 and nd6 (four electrons under consideration: two 
unpaired and two paired)

In each case: N=4; S=1; α=1; β=2; l=2; υ=5; γ=6 and 2S+1 = 
3;

J1(q) = -[(1-q) / q6]*[(1-q6)(1-q5)*(1-q4) (1-q3)] / [(1-q)*(1-q) 
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(1-q2)(1-q3)(1-q4) / (1-q3)]

= - (1-q5)( 1 + q + q2 )( 1 + q2 + q4) / q-6

= q5 + q4 + 2q3 + q2 + 2q – 2q-2 – q-3 –  2q-4 – q-5 – q-6 ;   3H, 3G, 
23F, 3D and 23P

For nd4 and nd6 (four electrons under consideration: all four 
electrons are paired)

In each case: N=4; S=0; α=2; β=0; l=2; υ=5; γ=7 and 2S+1 = 
1;

J0(q) = -[(1-q) / q7]*[(1-q6)(1-q5)2(1-q4) * 1] / [(1-q) (1-q2)*(1-q) 
(1-q2)(1-q3) / (1-q)]

= - (1-q5)( 1 - q + q2 )( 1 + q + q2  + q3 + q4)(1 + q2) / q7

= q6 + 2q4 + q3 + 2q2 + 2 – 2q-1 – 2q-3 – q-4 – 2q-5 – q-7 ;   1I, 21G, 
1F, 21D and 21S

For nf2 and nf12 (two electrons under consideration: the two 
electrons are unpaired)

In each case: N=2; S=1; α=0; β=2; l=3; υ=7; γ=6 and 2S+1 = 3;

J1(q) = -[(1-q) / q6]*[1*(1-q7)(1-q6)] / [1*(1-q)(1-q2)] = - (1- q7)
(1 + q2+ q4) /q6

= q5 + q3 + q – q-2 – q-4 – q-6 ; The terms are: 3H, 3F and 3P

For nf2 and nf12 (two electrons under consideration:: the two 
electrons are paired)

In each case: N=2; S=0; α=1; β=0; l=3; υ=7; γ=7 and 2S+1 = 
1;

J1(q) = -[(1-q) / q7]*[(1-q8)(1-q7)*1] / [(1-q)*(1-q2)] = - (1 - q7)
(1 + q2 + q4 + q6/) / q7

= q6 + q4 + q2 + 1– q-1 – q-3 – q-5 – q-7 ; The terms are: 1I,  1G, 
1D and 1S

For nf3 and nf11 (three electrons under consideration: the three 
electrons are unpaired)

In each case: N=3; S=3/2; α=0; β=3; l=3; υ=7; γ=7 and 2S+1 
= 4;

J3/2(q) = – [(1-q) / q7]*[1*(1-q7)(1-q6) (1-q5)] / [1*(1-q)(1-q2)
(1-q3)(1-q4)/(1-q4)]

= – (1 - q7)(1 – q5)(1 + q3) / q7

= – (1 + q2 + q3 + q4 + q6 – q7 – q9– q10– q11– q13) / q7

The terms are: 4I, 4G, 4F, 4D and 4P

For nf3 and nf11 (three electrons under consideration: two 
paired and one is unpaired)

In each case: N=3; S=1/2; α=1; β=1; l=3; υ=7; γ=9 and 2S+1 
= 2;

J1/2(q) = -[(1-q)/q9]*[ (1-q8)(1-q7)*(1-q6)] / [(1-q)* (1-q)(1-q2)
(1-q3)/(1-q2)]

= – [(1 – q6) / (1 – q3)]*(1 – q7)*[(1 – q8) / (1-q)] / q9

= – (1 + q + q2 + 2q3 + 2q4 + 2q5 + 2q6 + q7 - q10 - 2q11- 2q12- 
2q13- 2q14- q15- q16 - q17)/q9

= q8 + q7 + q6 + 2q5 + 2q4 + 2q3 + 2q2 + q - q-2 - 2q-3 - 2q-4 - 2q-5 
- 2q-6 - q-7- q-8- q-9

The terms are: 2L, 2K, 2I, 22H, 22G, 22F, 22D and 2P; (Note that 
the J term is omitted as explained in the L-S Coupling section 
above).

For nf4 and nf10 (four electrons under consideration: four 
unpaired electrons)

In each case: N=4; S=2; α=0; β=4; l=3; υ=7; γ=7 and 2S+1 = 
5;

J2(q) = – [(1-q) / q7]*[1*(1-q7)(1-q6)(1-q5)(1-q4)] / [1*(1-q)(1-
q2)(1-q3)(1-q4)(1-q5)/(1-q5)]

= - (1-q7)( 1 + q2 + q3 + q4 + q6) / q-7

=  q6 + q4 + q3 + q2 + 1 - q-1 - q-3 - q-4 - q-5 - q-7 ; The terms are: 
5I, 5G, 5F, 5D and 5S

For nf4 and nf10 (four electrons under consideration: two 
unpaired and two paired)

In each case: N=4; S=1; α=1; β=2; l=3; υ=7; γ=10 and 2S+1 
= 3;

J1(q) = -[(1- q) / q10]*[(1-q8)(1-q7)*(1-q6) (1-q5)] / [(1-q)*(1-q)
(1-q2)(1-q3)(1-q4) / (1-q3)]

= – (1-q7)(1 + q4)(1 + q2 + q4)*( 1 + q + q2+ q3 + q4) / q-10

= q9 + q8 + 2q7 + 2q6 + 4q5 + 3q4 + 4q3 + 2q2 + 3q – 3q-2 – 2q-3 
– 4q-4 – 3q-5 – 4q-6 – 2q-7 – 2q-8 – q-9 – q-10 ;

The terms are: 3M, 3L, 23K, 23I, 43H, 33G, 43F, 23D and 
33P; (Note that the J term is omitted as explained in the L-S 
Coupling section above).

For nf4 and nf10 (four electrons under consideration: all four 
electrons are paired)

In each case: N=4; S=0; α=2; β=0; l=3; υ=7; γ=11 and 2S+1 = 1;

J0(q) = – [(1-q) / q11]*[(1-q8)(1-q7)2(1-q6) * 1] / [(1-q)
(1-q2)*(1-q) (1-q2)(1-q3) / (1-q)]

= – (1-q7)( 1 + q2 + q4 + q6 )( 1 + q2 + q3  + q4 + q5 + q6+ q8) / q11

= q10 + 2q8 + q7 + 3q6 + 2q5 + 4q4 + q3 + 4q2 + 2 – 2q-1 – 4q-3 – 
q-4 – 4q-5 – 2q-6 – 3q-7 – q-8 – 2q-9 – q-11 ;

The terms are: 1N, 21L, 1K, 31I, 21H, 41G, 1F, 41D and 21S; 
(Note that the J term is omitted as explained in the L-S 
Coupling section above).

Conclusion
We have provided the theory of the ground state of atoms 
and that include the coupling of the orbital and spin angular 
momenta. It can be noted that by combining L and S values 
we obtain the term while combining the L, S and J values 
gives the level and J has (2J+1) microstates defined by MJ. 
Spectroscopic term symbols may be referred to as a formula 
that gives a detailed description of the electron configuration 
of the atoms or ions. We computed the term symbols that 
involve both equivalent and non-equivalent electrons using 
several known methods in the literature. The best method for 
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obtaining the terms for equivalent electrons is the Curl and 
Kilpatrick [4]. We caution the readers to take a great care in the 
algebra that are involved in the computational method to avoid 
obvious mistakes of the terms.
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