RESEARCH ARTICLE

Using GH-Method: Math-Physical Medicine to Predict Postprandial Plasma Glucose

Gerald C Hsu*

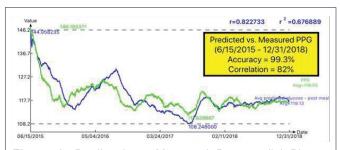
eclaire MD Foundation, USA

Keywords: GH Method, Postprandial Plasma Glucose (PPG), Type 2 Diabetes, Optical Physics

Introduction

Gerald spent 8.5 years and 23,000 hours to research his diabetes conditions. By using the GH-Method: math-physical medicine approach, he developed a postprandial plasma glucose (PPG) prediction model to evaluate and improve his type 2 diabetes conditions [1,2].

Method


Gerald has examined correlations between PPG and three known major factors, carbs/sugar intake, post-meal exercise, ambient temperature (weather) and other secondary factors, including stress/tension, measurement time delay, traveling, illness, sleep disturbance, etc. A total of 19 influential factors were identified and analyzed with over 1 million data collected.

Gerald have applied optical physics at the front-end and wave theory at the back-end to develop an AI-based PPG prediction model and tool to assist him in controlling his PPG [3,4].

Results

For 1,309 days (from 6/1/2015 to 12/31/2018), he had 3,927 meals and collected $\sim 80,000$ PPG-related data. The conclusions were:

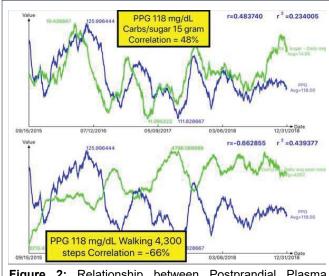

- 1. Average PPG: 119 mg/dL (Figure 1);
- 2. +48% correlation between PPG and carbs and sugar intake (15.0 gram and 38% contribution rate);

Figure 1: Predicted vs. Measured Postprandial Plasma Glucose (PPG) (6/1/2015-12/31/2018).

- 3. -66% correlation between PPG and post-meal walking (4,300 steps and 41% contribution rate) (**Figure 2**);
- 4. Ambient temperature (weather) contributes ~10% of PPF formation;
- 5. Collectively, the remaining 16 secondary influential factors account for ~10% of PPG formation.

Those PPG values were analyzed using a cloud-stored food database containing ~8 million data. He collected and reprocessed 6 million data from the Department of Agriculture, US government (USDA), 1.6 million data of 500 franchised restaurants, and his own collected 4,354 meal phots with ~0.5 million data.

Figure 2: Relationship between Postprandial Plasma Glucose (PPG), carbs/sugar, and exercise.

Correspondence to: Gerald C Hsu, eclaire MD Foundation, USA, Email: g[DOT] hsu[AT]eclairemd[DOT]com, Tel +1-510-331-5000

Received: March 31, 2020; Accepted: April 07, 2020; Published: April 09, 2020
Reviewed by: Zhang W

Conclusion

The predicted PPG (119.13 mg/dL) vs. measured PPG (119.05 mg/dL) has a 99.3% linear accuracy and 82% correlation coefficient. Based on his developed two glucose prediction tools, Gerald was able to reduce his PPG from 380 mg/dL to 116 mg/dL, daily glucose from 279 mg/dL to 116 mg/dL, and A1C from 10% to 6.5%.

References

1. Hsu Gerald C (2018) Using Math-Physical Medicine to Control T2D via Metabolism Monitoring and Glucose Predictions. *Journal of Endocrinology and Diabetes*, 1: 1-6. [View Article]

- Hsu Gerald C (2018) Using Math-Physical Medicine to Analyze Metabolism and Improve Health Conditions. Video presented at the meeting of the 3rd International Conference on Endocrinology and Metabolic Syndrome 2018, Amsterdam, Netherlands. [View Article]
- 3. Hsu Gerald C (2018) Using Signal Processing Techniques to Predict PPG for T2D. *Int J Diabetes Metab Disord*, 3: 1-3. [View Article]
- 4. Hsu, Gerald C (2018) Using Math-Physical Medicine and Artificial Intelligence Technology to Manage Lifestyle and Control Metabolic Conditions of T2D. *International Journal of Diabetes & Its Complications* 2:1-7. [View Article]

Citation: Hsu GC (2020) Using GH-Method: Math-Physical Medicine to Predict Postprandial Plasma Glucose. J Nutr Diet Pract 4: 001-002.

Copyright: © 2020 Hsu GC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.