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Editorial

The use of heat therapy in individuals with obesity and Type 2
diabetes mellitus has become an important treatment for metabolic
and cardiovascular diseases [1-5] for individuals in the developing
and developed world. The cellular response to heat therapy includes
the transcriptional up-regulation of genes encoding Heat Shock Pro-
teins (HSPs) as part of the cell’s internal repair mechanism [6,7]. These
stress-proteins respond to heat, cold and oxygen deprivation by acti-
vating several cascade pathways that may be relevant to survival and
apoptosis of mitochondria in cells [8]. Heat therapy has been used
with the plasma analysis of adiponectin, AMP-Activated Protein Ki-
nase (AMPK), Heat Shock Factor 1 (HSF1), Heat Shock Protein (HSP)
27, HSP70, and HSP90 important as markers for heat stress therapy
[9]. Diabetes that previously has involved pancreatic disease in Type
2 diabetic individuals [10] now involves global Non Alcoholic Fatty
Liver Disease (NAFLD) with heat therapy critical to improvement
in hepatic insulin resistance [11] in obese/diabetic individuals. Heat
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therapy in individuals with NAFLD has now become important to
increase hepatic fat metabolism and to improve insulin resistance in
these individuals [12]. Plasma bacterial Lipopolysaccharides (LPS)
have risen markedly [13] in individuals in the developing world and
the relationship between LPS and the repression of the heat shock
gene Sirtuin 1 (Sirt 1) has been reported with relevance to NAFLD
and diabetes [14-17]. LPS induces NAFLD and the relevance of di-
etary fat such as virgin coconut oil/palm oil consumption [14] should
be carefully controlled to prevent insulin resistance and accelerated
NAFLD. Individuals in the developing world are more susceptible to
NAFLD and diabetes and the heat shock response by LPS is involved
in the transformation of liver cells (NAFLD) [13] and associated with
defective heat stress response that involves the Sirt 1/HSF1 interaction
[18]. Sirt 1 (NAD+ dependent class III histone deacetylase) is import-
ant to the deacetylation of HSF1 [19-23] and hepatic HSP metabo-
lism [12,15] with relevance to in heat therapy in NAFLD and diabetes
(Figure 1). Sirt 1 is involved with the circadian regulation of HSP 60,
70 and 90 with temperature regulation closely associated with Sirt 1
activity/HSP levels in cells [24-26] and may be relevant to the heat
shock response in Type 2 diabetes. The metabolism of HSP is relevant
to insulin resistance with HSP linked to amyloid beta metabolism [10]
with relevance to insulin receptor interactions [27-37]. Sirt 1 and tran-
scriptional dysregulation [16] has become of major concern with p53
regulation of HSF1 and mircroRNA-34a (mir-34a) relevant to the heat
shock response (Figure 1) [38,39]. Sirt 1 is involved in the deacetyla-
tion of the transcription factor p53 [16] with heat therapy linked to
the induction of p53 related cell apoptosis [40-41]. Sirt 1 is involved
with various markers of heat stress such as adiponectin transcription
[42], AMPK connections [43], HSF1 regulation and HSP metabolism.
AMPK-Sirt 1 (Figure 1) [43] is involved with Nitric Oxide (NO)/HSP
crosstalk [44-46] with relevance to natural killer cell activity and the
induction of NAFLD [47,48]. LPS has been shown to induce HSPs
in various cells [49-51] and LPS in various species has been shown
to induce thermo regulatory dysfunction [52,53]. Heat therapy and
the involvement of Sirt 1 has become of importance with relevance
to the treatment of heart disease [4,5] and NAFLD in diabetes. LPS is
involved in the induction of cardiovascular disease [54] and its effects
on the repression of Sirt 1 have raised concern on the use of heat treat-
ment in diabetic individuals in the developing world. LPS is involved
in the interference in Sirt 1’s role in the deacetylationof p53/mir-34a/
HSF1 (Figure 1) [55] with the effects of heat therapy relevant to the
immune response [56,57] and accelerated apoptosis in various cells
and tissues. The role of LPS in thermodysregulation involves Sirt 1
dysregulation [16] with temperature regulation by Sirt 1 now relevant
to the regulation of p53 with heat shock protein associated with p53
accumulation [58].

Conclusion

The understanding of cellular gene response to heat therapy has
accelerated with the global epidemic in obesity and diabetes that is
related to chronic diseases such as cardiovascular disease and NAFLD.
Heat therapy that involves Sirt 1 should be carefully assessed with rel-
evance to Sirt I’s transcriptional regulation of HSF1/HSP interactions
and with excessive heat therapy may accelerate Sirt 1 mediated HSP
induced cell apoptosis. Heat therapy to maintain glucose homeostasis
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Figure 1: Heat therapy has become important to the treatment of global NA-
FLD and cardiovascular disease in individuals with diabetes. Heat therapy
now involves the heat shock gene Sirt 1 that is involved in the metabolism
of Heat Shock Proteins (HSPs), deacetylation of p53 (heat shock factor 1 re-
sponse) and nitric oxide/HSP homeostasis involved with the immune response
and programmed cell death.

in diabetic individuals in the developed world may differ from devel-
oping word diabetic individuals that lack the heat shock gene Sirt 1.
Heat therapy intervals that involve sauna versus hot tub temperatures
should be carefully reassessed for safety with relevance to time limits
for heat therapy that may last for weeks/months. Healthy diets that
do not contain saturated fats with heat therapy may prevent global
NAFLD but heat therapy in these individuals may be more successful
with the consumption of Sirt 1 activators versus Sirt 1 inhibitors with
relevance to the reversal of global NAFLD and diabetes.
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