REVIEW ARTICLE

A concise review and update of the anatomical circuitry of itch

Chan KTM

Specialist in Dermatology, Hong Kong SAR, China

Abstract

Chronic itch is a common, debilitating condition with major disease burden. Clinical management currently is based mainly on systemic antihistamines, steroids, anti-inflammatory drugs, antibiotics and lately biologics. These treatment strategies may have their own limitations and side effects. A critical and detail elucidation and understanding of the chronic itch scratch anatomical pathway is pivotal in designing new strategies in the management of this recalcitrant condition. Patients should also be informed about the anatomy and physiology of scratch which may enhance education, counselling and understanding of the condition. An integrated patient centre holistic approach should be adopted in management.

Keywords: Chronic Itch Scratch Pathway; Itch Specific Neurons; Central Nervous System; Cognition; Itch Inhibition Pathway; Education

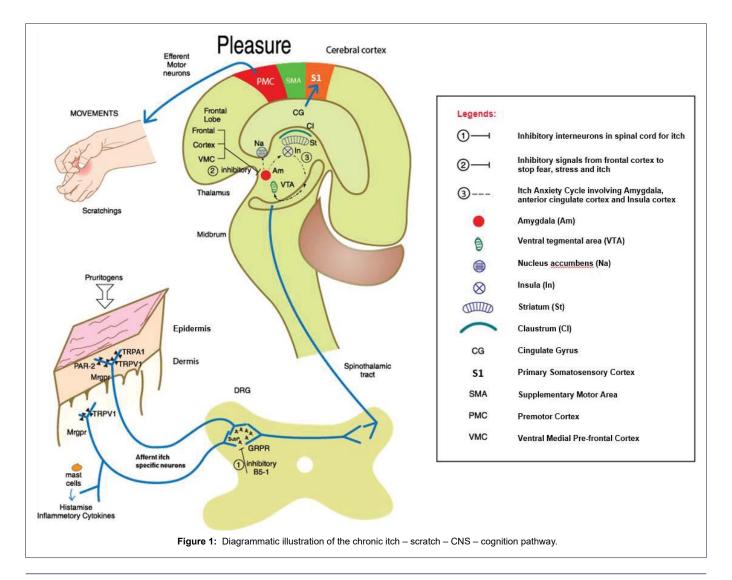
Introduction

Hedonists enjoy itch while many chronically ill suffered the distressing symptoms and consequences of unrelieved scratchings or itchings of resistant skin diseases like atopic dermatitis (AD), chronic liver, renal diseases, internal malignancy and ketamine and opioids addictions. Scratching as a cognitive movement, reflect our body innate reaction to the hostile environment. It also evolved slowly becoming a body gesture mirroring what our mind thinks consciously or subconsciously in social and life circumstances. Major advances in neurosciences and molecular biology unveiled our human body has a system of complicated and structured morphological itch or pruritogenic pathway with important neuro-physiological functions; enhancing us to better adapt to a changing world and better survival advantages.

Our journey of itch starting from the outmost layer of our body integument; the epidermis; with its specialised keratinocytes which morphologically and functionally be regarded as the outermost sensors of the peripheral nervous system (PNS) [1]. Epidermal keratinocytes possessed the widely distributed transient receptor potential (TRP); TRPV 1 receptors readily receiving environmental noxious stimuli including, heat, chemicals, pain and itch [2,3]. These agonists activate depolarization signals through calcium (Ca++) cation influx. Free nerve endings belong to the small neuro C fibres are posited between individual keratinocytes, sending neuronal signals through its afferent neurons joined by its counterparts of neuronal receptors of the PNS in the skin dermis. The discoveries of G protein C receptors (GPCR) protein interactors; Mrgrp receptors bring important insights that peripheral itch sensory inputs are not only histamine neurones

mediated but non-histaminergic neuronal pathways existed [4, 5]. Previously, histamine was believed the only mediator interact with Histamine 1 (H1) receptor to release histamine to result pruritic signals. H1 was shown to interact with TRPV 1 transmitting pruritic neuronal signals to the central nervous system (CNS) [2]. The non-histaminergic neuronal pathway is more complicated and not completely elucidated; involved afferent neurons possessing other neuronal receptors like TRPA 1, protease activated protein (PAR 2), Endothelial 1, Thymic stromal lymphopoietin (TSLP) and serotonin receptors [6,7]. MrgprA3, MrgprC11 and MrgprD⁺ expressed neurones located in the epidermis activated by Ser-Leu-Ile-Gly-Arg-Leu (SLIGRL) and β-alainine respectively relaying exclusive non-histaminergic itch to the dorsal root of ganglion (DRG) of the CNS [8]. On the other hand, MrgprA3 and MrgprC11 interact with TRPV 1 and TRP ankyrin 1 (TRPA1) in the epidermis transmit histaminergic and non-histaminergic pruritic signals to the CNS [9,7]. While superficial stimulation of noxious stimuli like cowhage initiate itch; deeper stimulation especially in the dermis of these neuronal receptors result pain. This give rise to the idea itch sensation is transmitted through a polymodal C fibre neuron with low intensity transmit itch while high intensity propagates pain perception [2]. The spatial linear model postulated that different distinctive anatomical pathways between itch and pain existed in the transmission and perception of itch and pain sensations [2]. At this junction, one may assume both model exists and can explain different

Correspondence to: Chan Kam Tim Michael, Association of Integrative Aesthetic Medicine, 2128-29, Pioneer Centre, 750, Nathan Road, Mongkok, Kowloon, Hong Kong SAR, China, E-mail: pioneerskin[AT]ymail[DOT]com


Received: Mar 24, 2018; **Accepted:** May 28, 2018; **Published:** May 30, 2018

scientific findings using different methodologies. Nonetheless, it is generally agreed that a subset of itch specific neuron exists exclusively transmit pruritic signal peripherally to the spinal cord of CNS [10]. Currently, two voltage gated depolarization signals; one involved Ca⁺⁺cation and the other sodium (Na⁺⁺ cation have been identified; in the transmission of itch [10]. The latter may mediate through the glutamate N-methy-D-aspartate receptor (NMDA) receptor pathway to the CNS.

The itch signals through its afferent neurons then synapse with neurons in the DRG with the Gastrin Protein C Receptors (GPCR) inter-relay pruritic neuronal signals contralateral to the opposite side of the same level of DRG of the spinal cord. Many studies have confirmed the gatekeeper role of GPCR as an anatomical identifiable pruritic receptor protein in the transmission of itch from the peripheral nervous system to the CNS [11]. Interestingly, an inhibitory interneuronal pathway Bhlhb5⁺ (B5-I) inhibits the transduction of itch through downregulation of TRP channels with the release of a kappa opioid receptor ligand neuropeptides called dynorphin; to impede pruritus [12]. A vast array of inflammatory mediators like prostaglandins, bradykinin, substance P (SP), nerve growth factors (NGF), cytokines, insulin, serotonin, noradrenaline (NA), interferon-Υ (IFN-Υ),

histamine 1 to 4, proteases and toll like receptors and its ligands secreted by immunological activated mast cells, T lymphocytes, keratinocytes, granulocytes and macrophages [13, 14]. Many other mediators that may promote itch in the DRG are Substance P (SP), cytokines, interleukins like IL-31 and natriuretic polypeptide b (Nppb) expressed in a subset of TRPV 1 neurons. Recent evidences, suggested that chronic itch promote glial cell proliferation and increase in astrocytes especially following induction of the body inflammasome in the CNS during chronic pruritus [15, 16].

The thalamus and midbrain which control many vital functions of our body like sleep and autonomic nervous system is the centre of pruritus in the CNS. The contralateral ascending spinothalamic tract relay histaminergic and non-histaminergic pruritogenic signals to the inner structures of the brain [17]. Hedonic scratch activated the primary somatosensory S1 areas of the cerebral cortex gave the perception of pleasantness of pruritus in the cingulate cortex which decided the movement of scratching from the motor cortex [18, 19]. The midbrain, ventral tegmental area, striatum, nucleus accumbens, caudate nucleus, ventromedial prefrontal cortex, insula and claustrum are all shown by functional magnetic resonance imaging (f-MRI) studies to be activated in this rewarding circuitry [20-

24]. A significant important insightful finding suggested that, an itch- anxiety circuitry existed in the primitive part of our inner brain, involving the hippocampus; its adjacent anatomical structures like amygdala, anterior cingulate cortex and insula cortex during itch and anxiety [25-28]. Subcallosal gray matter and nucleus accumbens of the brain are anatomically and physiologically activated in depression during chronic scratchings. (10) Conversely, specific anatomical areas of the prefrontal cortex can execute inhibitory signals to amygdala to suppress fear, anxiety, stress and chronic itch via a top down regulation through co-ordination of different cognitive domains in the cerebral cortex. [25] Claustrum may have a role to interocept and positively affect cognition especially in addictive behaviour. (10) Imbalance of various brain neurotransmitters like GABAs, serotonin, noradrenaline and dopamine has been implicated in mediating chronic itch in the brain through this complicated multi-dimensional pruritic circuitry. [10, 25] The diagrammatic representation of the itchscratch brain cognitive pathway is illustrated in (Figure 1).

In sum, chronic itch and its sensory perception involves a very specific networking system that is far more sophisticated than one believed in the past. One must go beyond; critically review our existing paradigm. As in chronic pruritus, the role of the CNS, cognition and new peripheral mediators are anatomically and functionally evident. This enables a possible new top down approach in management of these distressing chronic diseases. Academicians have a responsibility to inform and educate their peers and stakeholders on this. Injudicious use of prescribing systemic antihistamines in treating children and adult with chronic pruritus due to chronic AD, cholestasis, uraemia, lymphoma, psycho-dermatosis and substances abuse is common and non-evidence based. Practitioners, health care managers and stakeholders concerned should be educated and informed; starting from scratch; the anatomical pathway of chronic itch and scratch.

References

- 1. Baumbauer KM, DeBerry JJ, Adelman PC, Miller RH, Hachisuka J, et al. (2015) Keratinocytes can modulate and directly initiate nociceptive responses. *Elife* 2: 09674. [View Article]
- Bautista DM, Wilson SR, Hoon MA (2014) Why we scratch an itch: the molecules, cells and circuits of itch. *Nat Neurosci* 17: 175-182. [View Article]
- 3. Tóth BI, Oláh A, Szöllősi AG, Bíró T (2014) TRP channels in the skin. *Br J Pharmacol* 171: 2568-2581. [View Article]
- Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, et al. (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. *Cell* 139: 1353-1365. [View Article]
- 5. Qu L, Fan N, Ma C, Wang T, Han L, et al. (2014) Enhanced excitability of MRGPRA3 and MRGPRD-positive nociceptors in a model of inflammatory itch and pain. *Brain* 137:1039-1050. [View Article]
- Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, et al. (2013) The ion channel TRPA1 is required for chronic itch. *J Neurosci* 33: 9283-9294. [View Article]

- 7. Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel K, et al. (2011) TRPA1 is required for histamine-independent, Masrelated G protein-coupled receptor-mediated itch. *Nat Neurosci* 14: 595-602. [View Article]
- Liu Q, Sikand P, Ma C, Tang Z, han L, et al. (2012) Mechanisms of itch evoked by β-alanine. *J Neurosci* 32: 14532-14537. [View Article]
- 9. Shim WS, Tak MH, Lee MH, Kim M, Kim M, et al. (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. *J Neurosci* 27: 2331-2337. [View Article]
- 10. Sanders KM, Nattkemper LA, Yosipovitch G (2016) Advances in understanding itching and scratching: a new era of targeted treatments. F1000Res 5: 1-7. [View Article]
- Sun YG, Chen ZF (2007) A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. *Nature* 448: 700-703. [View Article]
- 12. Kardon AP, Polgár E, Hachisuka J, Snyder LM, Cameron D, et al. (2014) Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. *Neuron* 82: 573-586. [View Article]
- 13. Arai I, Tsuji M, Miyagawa K, Takeda h, Akiyama n, et al. (2015) Repeated administration of IL-31 upregulates IL-31 receptor A (IL-31RA) in dorsal root ganglia and causes severe itch-associated scratching behaviour in mice. *Exp Dermatol* 24: 75-78. [View Article]
- Storan ER, OGorman SM, McDonald ID, Steinhoff M (2015)
 Role of cytokines and chemokines in itch. *Handb Exp Pharmacol* 226: 163-176. [View Article]
- Shiratori-Hayashi M, Koga K, Tozaki-Saitoh H, Kohro Y, Toyonaga H, et al. (2015) STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. *Nat Med* 21: 927-931. [View Article]
- Zhang Y, Dun SL, Chen YH, Luo JJ, Cowan A, et al. (2015) Scratching activates microglia in the mouse spinal cord. J Neurosci Res 93: 466-474. [View Article]
- 17. Davidson s, Zhang X, Khasabov SG, Moser HR, Honda CN, et al. (2012) Pruriceptive spinothalamic tract neurons: physiological properties and projection targets in the primates. *J Neurophysiol* 108: 1711-1723. [View Article]
- 18. Bin Saif GA, Papoiu ADP, Banari L, McGlone F, Kwatra SG, et al. (2012) The pleasurability of scratching an itch: a psychophysical and topographical assessment. *Br J Dermatol* 166: 981-985. [View Article]
- 19. Mochizuki H, Tanaka S, Morita T, Wasaka T, Sadato N, et al. (2014) The cerebral representation of scratching-induced pleasantness. *J Neurophysiol*;11: 488–98. [View Article]
- 20. Vierow V, Fukuoka M, Ikoma A, Dorfler A, Handwerker HO, et al. (2009) Cerebral representation of the relief of itch by scratching. *J Neurophysiol*; 102: 3216-3224. [View Article]
- 21. Jeong KY, Kang KH (2015) Investigation of the pruritus-induced functional activity in the rat brain using manganese-enhanced MRI. *J Magn Reson Imaging* 42: 709-716. [View Article]
- 22. Vierow V, Fukuoka M, Ikoma A, dorfler A, Handwerker HO (2015) Cerebral networks linked to itch-related sensations induced by histamine and capsaicin. *Acta Derm Venereol* 95: 645-652. [View Article]

- Papoiu AD, Nattkemper LA, Sanders KM, Kraft RA, Chan Y, et al. (2013) Brain's reward circuits mediate itch relief. a functional MRI study of active scratching. *PLoS One* 8: e82389. [View Article]
- 24. Mochizuki h, Papoiu ADP, Nattkemper LA, Lin AC, Kraft RA, et al. (2015) Scratching induces overactivity in motor-related regions and reward system in chronic itch patients. *J Invest Dermatol* 135: 2814-2823. [View Article]
- 25. Sanders KM, Akiyama T (2018) The vicious cycle of itch and anxiety. *Neuroscience and Biobehavioral Reviews* 87:17-26. [View Article]
- Chen L, Wang W, Tan T, Han H, Dong Z (2016) GABA(A) receptors in the central nucleus of the amygdala are involved in pain- and itch-related responses. *J Pain* 17: 181-189. [View Article]
- Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S (2016b) Antagonistic negative and positive neurons of the basolateral amygdala. *Nat Neurosci* 19: 1636-1646. [View Article]
- 28. Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S (2017) Basolateral to central amygdala neural circuits for appetitive behaviors. *Neuron* 93: 1464-1479. [View Article]

Citation: Chan KTM (2018) A concise review and update of the anatomical circuitry of itch. J Anat Physiol Stud 1: 001-004.

Copyright: © 2018 Chan KTM . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.